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Abstract

Contributions to Modeling of Operational Risk in Banks

by

Anna S. Tchernobai

In Part I of the dissertation we review the Basel II Capital Accord and the

regulatory capital requirements for operational risk.

Part II of this dissertation addresses statistical and probabilistic assessment

of operational risk. Value-at-Risk and Conditional Value-at-Risk are taken as the

measure of the buffer capital. Losses are modeled in an actuarial-type compound

Cox process framework. A variety of issues is addressed; among the topics dis-

cussed are the following. (1) We provide empirical evidence that the intensity

factor follows a very specific non-homogeneous form. (2) Internal operational loss

databases suffer from reporting bias; practitioners often neglect this issue. We

provide theoretical and empirical justification that this bias leads to severe under-

estimation of the capital charge, and propose methodologies to evaluate the exact

information loss and incorporate it into the operational risk model. (3) “Low fre-

quency/ high severity” events are successfully captured by fitting variations of the

alpha-Stable distribution to the loss severity data. (4) An innovative EDF-based

goodness-of-fit test is designed to evaluate the performance of the loss distribu-

tions in the upper quantiles that largely determine the amount of the risk capital.

(5) Finally, methodologies for robust modeling of operational risk are addressed.
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Chapter 1

Introduction

1.1 General Introduction

Operational risk is defined as “the risk of loss resulting from inadequate or failed

internal processes, people and systems, or from external events.” Financial mar-

kets in the last two decades have been highlighted by large-scale financial failures

due to incompetence and fraud, such as Barings, Daiwa, Allied Irish Banks, Or-

ange County, Enron, along with man-made and natural disasters, such as “9/11,”

Hurricanes Andrew and Katrina. As a consequence, operational risk has been

acknowledged to overweigh the importance of credit and market risks.

Since 2001, the Basel Committee for the Banking Supervision of the Bank of

International Settlements has been requiring banks to set aside regulatory capital

amount that would cover potential operational loss. The capital amount must be

evaluated on a one-year aggregated basis at a sufficiently high confidence level.

Statistical tools are required to accurately assess the frequency and severity dis-

tributions.

The presence of so-called “low frequency/ high severity” events poses problems

for the modeling of operational risk and calls for models capable of capturing
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excessive heavy-tailedness in the data.

The goal of this dissertation is to provide some contributions to statistical and

probabilistic modeling of operational risk. All theoretical models discussed in this

dissertation are supplemented by extensive empirical testing with real operational

loss data.

1.2 Main Contributions

Part I

In Part I, we give an extensive account to the development of operational risk

awareness by banks in the past two decades. Recent banking failures clearly

attributed to losses unrelated to credit and market risk were linked to and justified

by drastic developments in the global financial regimes, such as globalization,

deregulation, and revolutionary technological innovations. Operational risk is

defined and its place among other financial risks is distinctly identified.

Part II

Operational losses occur in an irregular fashion, suggesting that actuarial-type

models are relevant for stochastic modeling of operational risk. We develop an

optimal compound Cox process model that constitutes two core components: (1)

a stochastic intensity function of a non-linear deterministic form, and (2) heavy-

tailed claim amounts. An analytic expression for the intensity function is proposed

and it is empirically proven to be vastly superior to a homogeneous intensity

rate under the simple Poisson assumption. A large class of loss distributions –

Exponential, Lognormal, Weibull, Logweibull, Gamma, Pareto, Burr, α-Stable,

logα-Stable, and symmetric α-Stable – are applied to real loss data of five types:
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“Relationship”, “Human,” “Processes,” “Technology,” and “External,” obtained

from a large European public operational loss data provider. We develop a proce-

dure for forecasting 1-year Value-at-Risk and Conditional Value-at-Risk – proxies

for the operational risk capital charge. Relevant goodness-of-fit tests backtesting

are performed, using bootstrapping and other innovative techniques.

Operational loss data are very heavy-tailed and right-skewed, and require a loss

distribution sufficient to capture the “low frequency/ high severity” events. This

justifies our extensive use of the α-Stable (Paretian) distribution for operational

loss modeling. Variations of the α-Stable distribution (logα-Stable, symmetric α-

Stable, and truncated α-Stable) are fitted to the loss data; superiority over other

loss distributions are evident in the flexibility, better fit in the upper quantiles, and

other attractive features. Furthermore, we propose using right-truncated α-Stable

distributions that would ensure finite mean, variance, and high moments.

Reporting bias in the operational loss data is addressed: the minimum collec-

tion threshold is set at approximately $10,000 in the internal databases and ap-

proximately $1 million in the external – a reality often neglected by practitioners.

We propose a procedure to correctly specify the loss and frequency distributions

in order to fully account for the missing data and accurately evaluate Value-at-

Risk and Conditional Value-at-Risk. To correctly estimate the parameters of the

loss distribution, two methodologies are suggested: the Expectation-Maximization

algorithm and the Restricted Maximum Likelihood. Additionally, we design a

procedure for rescaling the intensity parameter of the frequency distribution to

account for the exact information loss. Analytic expression of the bias in the loss

and frequency distribution parameters and the Value-at-Risk are derived. It is

further shown empirically that ignoring the missing data results in severe under-

estimation of the aggregate mean and the capital charge.
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In operational risk, of central concern is the fit of loss distribution to the data

in the upper tail, as the upper tail of correctly specified aggregate distribution is

the primary determinant of the amount of the capital charge. We develop a novel

goodness-of-fit test that puts more weight on the upper quantiles and less weight

on the medium and lower quantiles.

Outliers in the operational loss data are analyzed, and robust modeling is

performed. We claim that robust methods can be used as a key diagnostic tool to

reveal the influence of outliers on vital statistics and verify empirically that the

influence of the highest 5% of loss data accounts for beyond 50% of the total risk

exposure.
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Part I

Operational Risk Management:

Overview
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Chapter 2

What is Operational Risk?

2.1 Introduction

Until very recently, it has been believed that banks are exposed to two main risks.

In the order of importance they are credit risk (i.e., counterparty failure risk) and

market risk (i.e., risk of loss due to changes in market indicators, such as equity

prices, interest rates and exchange rates). Operational risk has been regarded as

a mere part of “other” risks.

Operational risk is not a new concept for banks: operational losses have been

reflected in banks’ balance sheets for many decades. They occur in the banking

industry every day. Operational risk affects the soundness and operating efficiency

of all banking activities and all business units. We begin our discussion with an

explanation of the notion of risk.

2.2 What is Risk?

In the financial context, risk is the fundamental element that affects financial

behavior. There is no unique or uniform definition of risk: different financial
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institutions may define risk slightly differently, depending on the specifics of their

banking structure, operations and investment strategies. The definition of risk

also depends on the context.

In the economics literature, generally risk is not necessarily a negative concept,

and is understood as uncertainty about future or the dispersion of actual from

expected results. In the context of business investment, risk is the volatility of

expected future cash-flows (measured, for example, by the standard deviation),

and in the context of the Capital Asset Pricing Model (CAPM) is the risk of asset

price volatility due to market-related factors and is captured by β. Such definitions

do not exclude the possibility of positive outcomes. Hence, for the operational

risk we need a different definition.1

For the purposes of operational risk modeling and analysis, the definitions from

insurance are more appropriate, as the notion of risk in insurance has a negative

meaning attached to it. Risk is perceived as the probability and impact of a

negative deviation, the probability or potential of sustaining a loss, “a condition

in which there is a possibility of an adverse deviation from a desired outcome that

is expected or hoped for” [159], or “an expression of the danger that the effective

future outcome will deviate from the expected or planned outcome in a negative

way” [78]. As the next step, we need to distinguish operational risk from other

categories of financial risk.

2.3 Definition of Operational Risk

Operational risk is largely a firm-specific non-systematic risk: according to the

Bank of International Settlements (BIS), “Unlike market and perhaps credit risk,

1Of course, it is possible that for example an employee error can result in an operational
gain rather than loss for the bank, but this possibility is generally ignored for the purpose of
operational risk modeling. We do not treat this case.
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the [operational] risk factors are largely internal to the bank” [22].

Earlier references on operational risk defined operational risk as “other risks”,

or “any risk not categorizes as market and credit risk”, and “the risk of loss arising

from various types of human or technical errors” [21]. Other definitions include:

risk “arising from human and technical errors and accidents” [102], “a measure

of the link between a firm’s business activities and the variation in its business

results” [106], and “the risk associated with operating a business” [45].

The formal definition that is currently widely accepted was initially proposed

by [14] and adopted by the Basel Committee in January 2001 [25]: operational

risk was defined as “the risk of direct or indirect loss resulting from inadequate or

failed internal processes, people or systems or from external events.” The industry

responded to this definition with criticism regarding the unclarity in the meaning

of “direct” and “indirect” losses. A refined definition of operational risk, provided

by the September 2001 consultative document, dropped the two terms, hence

finalizing the definition of operational risk as [26]:

Definition 1 (Operational risk) Operational risk is the risk of loss resulting from

inadequate or failed internal processes, people or systems or from external events.

This definition includes legal risk, but excludes strategic and reputational risk.

The definition is causal-based, as it provides the breakdown of operational risk by

its four major sources:

1. people,

2. processes,

3. systems, and

4. external factors.
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2.4 Operational Risk Exposure Indicators

The chance of an operational risk event is increased with a larger number of

personnel (due to increased possibility of committing an error) or with a greater

transaction volume. A list of operational risk exposure indicators is given in [4,

pp. 168-169] [91, pp. 250] [25, Annex 4]. Examples of the operational risk exposure

indicators include:

• Gross income;

• Volume of trades or new deals;

• Value of assets under management;

• Value of transactions;

• Number of transactions;

• Number of employees;

• Employees’ years of experience;

• Capital structure (debt to equity ratio);

• Historical operational losses;

• Historical insurance claims for operational losses.

2.5 Classification of Operational Risk

The formal definition of operational risk classifies the losses by the sources into four

groups: human, process, technology and external losses. Operational risk can be

also classified according to a variety of other principles. It can be classified by the
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nature of the loss (such as internally inflicted or externally inflicted, direct losses

or indirect losses), by the degree of expectancy (expected or unexpected), by risk

type, event type, business line, or loss type, and by the magnitude (or severity) of

loss and frequency of loss. The Basel II Capital Accord classifies operational risk

into 7 event type groups, 8 business lines, and identifies 6 operational loss types.

Classification of operational risk by event types was discussed by [5]. Detailed

description of each of the event types, business lines mapping, and loss types is

presented in the Appendix to this chapter.

2.6 Topology of Financial Risks

Until recently, credit risk and market risk have been considered as the two largest

contributors to banks’ risks. Classifications of financial risks were suggested

in [45] [158] [156] [76]. In accordance with recent capital requirements and defi-

nitions of various financial risks by the Basel Capital Accord (2004), we propose

an alternative topology of financial risks, summarized in Figure 2.1 and described

below.

1. Credit Risk: the potential that a bank borrower or counterparty will fail to

meet its obligations in accordance with agreed terms (BIS definition).

2. Market Risk: the risk of losses (in on- and off-balancesheet positions) arising

from movements in market prices, including interest rates, exchange rates

and equity values (BIS definition). It is the risk of the potential change in

the value of a portfolio of financial instruments resulting from the movement

of market rates, underlying prices and volatilities. The major components of

market risk are the interest rate risk, equity position risk, foreign exchange

risk, and commodity risk.
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Figure 2.1: Topology of financial risks in banks.
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3. Operational Risk: the risk of loss resulting from inadequate or failed internal

processes, people or systems or from external events (BIS definition). As

already mentioned, operational risk includes legal risks, which includes, but

is not limited to, exposure to fines, penalties, or punitive damages resulting

from supervisory actions, as well as private settlements (BIS definition).

4. Liquidity Risk: the risk of inability to fund increases in assets and meet

obligations as they come due (BIS definition), such as inability to raise

money in the long-term or short-term debt capital markets, or an inability

to access the repurchase and securities lending markets. An alternative

definition by [45] says that liquidity risk is the risk that the institution will

not be able to execute a transaction at the prevailing market price because

there is, temporarily, no appetite for the deal on the “other side” of the

market. Liquidity risk is often considered part of market risk.

5. Business and Strategic Risk: the risk that a bank would have to modify the

line of behavior and activity in order to cope with changes in the economic

and financial environment in which it operates. For example, a new com-

petitor can change the business paradigm, or new strategic initiatives (such

as development of a new business line or re-engineering an existing business

line, for example, e-banking) can expose bank to strategic risk [45]. Many

strategic risks are involved with the timing issue [24].

6. Reputational Risk: the risks mainly associated with the customer, i.e. the

risk of failure to meet customers’ expectations. Banks with a large private

banking sector and e-banking activities are especially vulnerable to reputa-

tional risk. Reputational risk includes risks related to customer data and

privacy protection, e-banking and e-mail services, timely and proper infor-
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mation disclosure, etc. [24].

7. Political Risk: the risk of an adverse impact on bank’s activities due to

changes in country and/or regional political or economical pressures, such

as monetary controls. Changes in political policies may adversely affect the

ability of clients or counterparties located in that country or region to obtain

foreign exchange or credit and, therefore, to perform their obligations to the

bank.

8. General Legal Risk: the risk that a bank would have to modify its activities

due to changes in the country’s legal system or law enforcements. Examples

include a potential impact of a change in tax codes.
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2.7 Appendix: Operational Loss Event Types,

Business Lines, and Loss Types

Table 2.1: Business line mapping according to the Basel II Capital Accord.

Business Unit Business Line

Investment Banking
Corporate Finance
Trading and Sales

Banking

Retail Banking
Commercial Banking
Payment and Settlement
Agency Services

Others
Asset Management
Retail Brokerage

Table 2.2: Loss types and definitions according to the Basel II Capital Accord.

Loss Type Contents

Write-downs Direct reduction in value of assets due to theft, fraud, unau-
thorized activity or market and credit losses arising as a
result of operational events

Loss of recourse Payments or disbursements made to incorrect parties and
not recovered

Restitution Payments to clients of principal and/or interest by way of
restitution, or the cost of any other form of compensation
paid to clients

Legal liability Judgements, settlements and other legal costs

Regulatory and compli-
ance

Taxation penalties, fines, or the direct cost of any other
penalties, such as license revocations

Loss of or damage to
assets

Direct reduction in value of physical assets, including certifi-
cates, due to some kind of accident (e.g., neglect, accidents,
fires, earthquakes)
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Table 2.3: Event types and descriptions according to the Basel II Capital Accord.

Event Type Definition and Categories

Internal fraud Acts intended to defraud, misappropriate property or cir-
cumvent regulations, the law or company policy, which in-
volves at least one internal party. Categories: unauthorized
activity and theft and fraud.

External fraud Acts of a type intended to defraud, misappropriate property
or circumvent the law, by a third party. Categories: (1)
theft and fraud and (2) systems security.

Employment

Practices and
Workplace Safety

Acts inconsistent with employment, health or safety laws
or agreements, from payment of personal injury claims, or
from diversity/discrimination events. Categories: (1) em-
ployee relations, (2) safe environment, and (3) diversity and
discrimination.

Clients, Prod-

ucts and Business
Practices

Unintentional or negligent failure to meet a professional obli-
gation to specific clients (including fiduciary and suitability
requirements), or from the nature or design of a product.
Categories: (1) suitability, disclosure and fiduciary, (2) im-
proper business or market practices, (3) product flaws, (4)
selection, sponsorship and exposure, and (5) advisory activ-
ities.

Damage to Phys-

ical Assets

Loss or damage to physical assets from natural disaster or
other events. Categories: Disasters and other events.

Business Disrup-

tion and System
Failures

Disruption of business or system failures. Categories: sys-
tems.

Execution, De-

livery and Process
Management

Failed transaction processing or process management, from
relations with trade counterparties and vendors. Categories:
(1) transaction capture, execution and maintenance, (2)
monitoring and reporting, (3) customer intake and docu-
mentation, (4) customer/client account management, (5)
trade counterparties, and (6) vendors and suppliers.
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Chapter 3

Operational Risk as Dominant

Financial Risk

3.1 Introduction

Until recently, it has been generally considered that credit risk and market risk are

the major sources of risk for a financial institution, while the importance of other

risks such as operational risk has been largely underestimated. In this chapter we

focus on the significance of operational risk in the financial industry.

3.2 Effects of Globalization and Deregulation:

Increased Risk Exposures

In the course of the last couple of decades, the global financial industry has been

highlighted by several pronounced trends, which have been in response to increased

investors’ appetites:

• globalization and deregulation,
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• accelerated technological innovation,

• revolutionary advances in the information network, and

• increase in the scope of financial services and products.

Examples of some global financial changes include the following:

• “Big Bang” reform in the London Stock Exchange, October 1986: introduc-

tion of automated screen-based trading, eliminated fixed commissions on

security trades and allowed securities firms to act as brokers and dealers.

• “Big Bang” financial deregulation reform, Japan, 1998: liberalization of

banking, insurance, and stock exchange markets and boosting the competi-

tion of the Japanese financial market relative to the European and American

markets.

• The Financial Services Act of 1999, United States, 1999: the bill repealed the

1933 Glass-Steagall Act’s restrictions on bank and securities firm affiliations

and allowed affiliations among financial service companies, including banks,

registered investment companies, securities firms, and insurance companies

– formerly prohibited under the Bank Holdings Act of 1956; it also called

for the expansion of the range of financial services allowed by banks.

• Formation of the European Union and adoption of a single currency, Euro,

1990s: integration on the cultural, economic, and political levels.

• Collapse of the Soviet Regime, early 1990s: a result was creation of a massive

new market for capital flows.

As a side-effect of these global financial trends and policies, outsourcing, ex-

pansion of the scope of financial services, and large-scale mergers and acquisitions
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(M&A) have become more frequent around the globe. These, in turn, inevitably

result in an elevated exposure of the financial institutions to various sources of

risk. As a simple example, increased use of computer-based banking services is

vulnerable to viruses and computer failures, and credit card fraud. When business

units expand, this requires additional employees – this may increase the number

of errors committed and increase the hazard of fraudulent activities.

3.3 Operational Risk is the Dominant Risk in

Banks

As result of global shifts in the financial industry, discussed in §3.2, previously

non-existent or insignificant risk factors have become a large (or larger) part of

the complex risk profiles of financial institutions. Up until recently, cash flow

fluctuations of a larger scale, that are more likely to be incurred by an institu-

tion/bank’s operation practices rather than market or credit risk related factors,

have not been well-managed [106].

Without exaggeration, operational risk is the most striking of all, and has been

the subject of heated discussions among risk managers, regulators, and academics

in the last several years. In 1999, the Basel Committee for Banking Supervision

(BCBS) confirmed this by the following statement [23]: “...an informal survey [22]

that highlights the growing realisation of the significance of risks other than

credit and market risks, such as operational risk, which have been at the

heart of some important banking problems in recent years...” As Roger W. Fer-

guson, Vice Chairman of the Board of Governors of the Federal Reserve System,

stated, “In an increasingly technologically driven banking system, operational risks

have become an even larger share of total risk. Frankly, at some banks, they are
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probably the dominant risk.”1 Major banks share the same view. As an example,

a report by the HSBC Group (2004) states that “...regulators are increasingly

focusing on operational risk ... This extends to operational risk the principle of

supporting credit and market risk with capital, since arguably it is operational risk

that potentially poses the greatest risk.”2

3.4 Examples of High-Magnitude Operational

Losses

The world financial system has been shaken by a number of banking failures over

the last 20 years, and the risks – that particularly internationally active banks

have had to deal with – have become more complex and challenging. More than

100 operational losses exceeding $100 million in value each, and a number of

losses exceeding $1 billion, have impacted financial firms globally since the end

of 1980s.3 There is no question that the cause is unrelated to market or credit

risks. Such large-scale losses have resulted in bankruptcies, mergers, or substantial

equity price declines of a large number of highly recognized financial institutions.

Several examples of such losses that occurred in the last two decades are briefly

presented in Table 3.4.

References on the discussion of the Orange County collapse include [101] [103]

[99], and personal accounts of the case by Nick Leeson include his monographs

[112] [113]; references on the Barings Bank case include [108] [109] [72] [11] [10] [42];

Daiwa Bank’s case was analyzed by [111] [73]. Other well-known examples from

1From the 108th session on The New Basel Capital Accord Proposal, Hearing before the
Committee on Banking, Housing and Urban Affairs, United States Senate, 2003.

2HSBC Operational Risk Consultancy group was founded in 1990, and is a division of HSBC
Insurance Brokers.

3Large internationally active banks typically experience between 50 and 80 losses exceeding
$1 million per year [49].
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Table 3.1: Examples of high-magnitude operational losses from the global financial
industry in the last two decades.

Year Name Impact Description

1994 Orange County >$1.7 bln,
bankruptcy

Incompetence (Robert Citron, trea-
surer), lack of expert risk oversight,
and poor internal surveillance and con-
trol

1995 Barings Bank >$1 bln,
bankruptcy

Internal fraud (Nick Leeson, trader),
unauthorized trading, and poor inter-
nal surveillance and control

1995 Daiwa Bank >$1.1 bln,
S&P down-
grading from
A to BBB

Internal fraud and illegal trading
(Toshihide Iguchi, trader), and poor
internal surveillance and control

2001 “9/11” Terrorist
Attack

Civilian and
property loss,
business dis-
ruptions

Terrorism externally inflicted

2002 Allied Irish Banks >$0.7 bln Fraudulent activities (John Rusnak,
trader) and poor interla surveillance
and control

the financial industry include losses incurred by Bank of Credit and Commerce

International (1991, fraud) [15] [1], Bankers Trust (1994, fraud), NatWest Markets

(1997, error, incompetence) [148], Nomura Securities (1997, fraud), and the Enron

collapse (2001) [117] [155] [74] [32]. Some individual case studies are discussed

in [41] [46] [45] [66].

20



Chapter 4

Basel II: Regulatory Capital

Requirements

4.1 Introduction

While one possibility for banks to manage operational risk would be to make ef-

forts to prevent it, another option would be to try to protect themselves against

potential consequences. Capital requirements for operational risk were proposed

by the Basel Committee for Banking Supervision (BCBS) of the Bank of Interna-

tional Settlements (BIS) in 1999, and the first guidelines were released in 2001.

This chapter reviews these capital requirements and makes an important link with

subsequent chapters related to modeling issues.
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Figure 4.1: Banks’ economic capital allocation for operational, market, and credit
risks according to Jorion (2000).
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4.2 Capital Allocation for Operational, Market,

and Credit Risks

The primary role of capital charge is to serve as a buffer to protect against the

damage resulting from risk. It can also be seen as a self-insurance tool. There are

two types of risk capital, and clear distinction should be made.

• Economic capital is defined as the amount of capital market forces dictate

for risk in a bank.

• Regulatory capital is the amount of capital necessary to provide adequate

coverage of banks’ exposures to financial risks. A one year Minimum Reg-

ulatory Capital (MRC) is calculated as 8% of reported risk-weighted assets

for the year in question.

Large internationally-active banks allocate roughly $2 billion to $7 billion to

operational risk [49]. Current estimates suggest that the allocation of total finan-

cial risk of a bank is roughly 60% to credit risk, 15% to market risk and liquidity

risk, and 25% to operational risk [102]; see Figure 4.1. [46] suggests 50%, 15%,
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and 35%, respectively, and [45] suggest 70%, 10%, and 20%, respectively. The

portion of economic capital allocated to operational risk has been reported to

range between 15% and 25%, [25]. This implies an average of 20%.

4.3 The Basel Capital Accord

The central goal of the Basel Capital Accord is to set guidelines for the estimation

of the regulatory capital charge for operational, credit, and market risks, and set

necessary managerial principles for the risks.

In July 1988, the Basel Committee released the Capital Accord, now commonly

referred to as “Basel I”. The primary objective was to establish minimum capital

standards designed to protect against credit risk.1 In April 1993 including market

risk into the scope of risks subject to capital requirements was discussed and

the capital accord was broadened in 1996 [20] [21]. After two years, reflecting the

developments in the financial industry in the preceding years, the Basel Committee

decided to undertake a comprehensive amendment of the Basel I and account for

the diversity of risks taken by banks. The new capital accord of 1998 is now known

as “Basel II”. The document “Operational Risk Management” was released in

1998 and discussed the importance of operational risk as a substantial financial

risk factor [21]. No discussion regarding the requirement of a capital charge against

operational risk had been made until the breaking point in January 2001 when

the consultative document “Operational Risk” was released [25].

The Basel II has undergone a number of amendments and was finalized in

June 2004.2 Under the capital accord, operational risk regulatory capital, esti-

1Although Basel I discussed the capital requirements for only credit risk, it used a “broad-
brush” approach, as it was constructed in such a way as to also implicitly cover other risks.
See [19] for the description.

2A number of amendments to the 2001 proposal have been released by the Basel Committee
since 2001. See the BIS official website http://www.bis.org for a full list of downloadable
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mated separately by every bank, is designed to reflect the exposure to operational

risk. The accord defines and sets detailed instructions on the capital assessment

of operational risk and proposes several approaches that banks may consider to

estimate the operational capital charge, as well as outlines necessary managerial

and disclosure requirements.

The deadline for implementation of the Capital Accord has been provisionally

set to year-end 2007, with some transitional adjustments. The scope of application

is mainly internationally active banks and their subsidiaries including securities

companies. The organization of the Basel II uses a three pillar structure and

addresses three types of risk: credit risk, market risk, and operational risk:

• Pillar I: Minimum capital requirements;

• Pillar II: Supervisory review of an institution’s capital adequacy and internal

assessment process;

• Pillar III: Market discipline through public disclosure of various financial

and risk indicators.

The main focus of this dissertation is to provide a necessary statistical model

to be used for the estimation of the minimum capital under the Pillar I.

4.4 Pillar I: Minimum Capital Requirements

In 2001 BIS suggested that the capital charge for operational risk should cover

unexpected losses (UL) due to operational risk, and that provisions should cover

expected losses (EL); see Figure 4.2. This is due to the fact that for many banking

activities with a highly likely incidence of expected regular operational risk losses

publications.
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Figure 4.2: Decomposition of the operational loss distribution into expected (EL),
unexpected (UL), and catastrophic operational losses. The distribution represents
one-year compound loss distribution based on the one-year frequency and severity
distributions. The upper bound for UL is suggested to be estimated at a high
confidence level, such as 95-99.9%. The high percentile can be estimated by the
Value-at-Risk or Conditional Value-at-Risk measure.
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(such as fraud losses in credit card books), they are deducted from reported income

in the particular year. Therefore, in 2001 BIS proposed to calibrate the capital

charge for operational risk based on both EL and UL, but to deduct the amount

due to provisioning and loss deduction (rather than EL) from the minimum capital

requirement [25].

However, accounting rules in many countries do not provide a robust and

clear approach to setting provisions, for example allowing for provisions set only

for future obligations related to events that have already occurred. In this sense,

they may not accurately reflect the true scope of EL. Therefore, in the 2004 final

version of the accord it was proposed to estimate the capital charge as a sum

of EL and UL and to allow to subtract the EL portion in those cases when the

bank is able to demonstrate its ability to capture the EL by its internal business

practices [28].
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Exhibit 4.2 illustrates the dimensions of operational risk. Catastrophic loss

is the loss in excess of the upper boundary of the estimated UL, such as 99.9%

Value-at-Risk.3 It requires no capital coverage; however, insurance coverage may

be considered. Catastrophic loss is often called stress loss.

4.4.1 Three Approaches to Assess Operational Risk Cap-

ital Charge

Three approaches have been finalized for assessing the operational risk capital

charge [25] [26]:

1. the Basic Indicator Approach (BIA),

2. the Standardized Approach (TSA),

3. the Advanced Measurement Approaches (AMA).

The BIA and TSA are often referred to as the top-down approaches in the

sense that the capital charge is allocated according to a fixed proportion of income

(bank’s gross income under BIA and separately for each business line under TSA),

and the AMA are called the bottom-up approaches in the sense that the capital

charge is estimated from the actual internal loss data. We focus on the AMA that

is relevant for our subsequent discussion.

4.4.2 Loss Distribution Approach in Detail

Loss Distribution Approach is the most sophisticated within AMA. Under the

LDA, it is suggested that bank’s activities are classified into a matrix of “business

lines/ event type” combinations (certainly, the actual number of business lines

3The notion of Value-at-Risk will be discussed in Chapter 5.
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and event types depends on the complexity of the bank structure). For a general

case of 8 business lines and 7 event types, bank deals with a 56-cell matrix of

possible pairs. For each pair, the key task is to estimate the loss severity and loss

frequency distributions. Based on these two estimated distributions, the bank

then computes the probability distribution function of the cumulative operational

loss.

The operational capital charge is computed as the simple sum of the one-

year Value-at-Risk (VaR) measure (with confidence level such as 99.9%) for each

“business line/ risk type” pair. The 99.9th percentile means that the capital

charge is sufficient to cover losses in all but the worst 0.1% of adverse operational

risk events. That is, there is a 0.1% chance that banks will not be able to cover

adverse operational losses.

Under simplifying assumptions, for the general case – 8 business lines (j =

1, 2, . . . , 8) and 7 loss event types (k = 1, 2, . . . , 7) – the capital charge can be

expressed as:

KLDA =
8∑

j=1

7∑
k=1

VaRjk.

The advantages of the LDA are as follows:

1. Highly risk sensitive: makes direct use of bank’s internal loss data;

2. No assumptions are made about relationship between expected and unex-

pected losses;

3. Applicable to banks with solid databases;

4. Provided that an estimation methodology is correct, LDA provides an ac-

curate capital charge.
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A common criticism of LDA is that estimating the capital charge by a simple

sum of the Value-at-Risk measures implies a perfect correlation among the “busi-

ness line/ event type” combinations. A modified version of the LDA approach

would take into consideration such correlation effects. Other drawbacks include:

1. Loss distributions may be complicated to estimate. Therefore, the approach

can create model risk (i.e., wrong estimates due to the misspecification of

the model);

2. VaR confidence level is currently not agreed upon, and whether 99.9% or

higher/lower percentile is considered makes significant difference on the cap-

ital charge;

3. Extensive internal data sets (at least 5 years) are required;

4. The approach lacks the forward-looking component, because the risk assess-

ment is based primarily on the past loss history.
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Part II

Aggregate Stochastic Modeling of

Operational Risk

29



Chapter 5

Exploratory Data Analysis,

Value-at-Risk, and Conditional

Value-at-Risk

5.1 Introduction

Operational risk possesses unique characteristics that distinguish it from other

sources of financial risk. The nature of operational risk is very different from that

of market risk and credit risk. In fact, operational losses share many similarities

with insurance claims, suggesting that most actuarial models can be a natural

choice of the model for operational risk, and models well developed by the insur-

ance industry can be almost exactly applied to operational risk. In this chapter

we will introduce our dataset on which all our empirical studies are based, and

will begin our discussion of statistical modeling of operational risk.
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5.2 Description of the Dataset

We here introduce the dataset which lies in the basis of our subsequent empirical

studies in this dissertation. We work with operational loss data for the period 1980

to 2002 that comprises publicly announced operational loss events throughout the

world, obtained from a major European data provider. The original loss data

covered losses in the period 1950-2002; however, we excluded observations prior

to 1980 because of relatively few data points available that is most likely explained

by poor data recording practices. A few recorded data points appeared below $1

million in nominal value, so we excluded them from the dataset, to make it more

consistent with the conventional threshold for external databases of $1 million.

The loss amounts have been adjusted for inflation using the Consumer Price Index

from the U.S. Department of Labor. Loss data are classified into five types:

• “Relationship:” events related to legal issues, negligence, and salesrelated

fraud,

• “Human:” events related to employee errors, physical injury, and internal

fraud,

• “Processes:” events related to business errors, supervision, security, and

transactions,

• “Technology:” events related to technology and computer failure and telecom-

munications, and

• “External:” events related to natural and man-made disasters and external

fraud.

For each operational loss, the date of occurrence (more precisely, the date

on which the state of affairs of the event was considered “closed” or “assumed
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closed”) and the loss amount in U.S. dollars was available. For some data points

the exact date was not available, and only the year was known. Information on

the year suffices when a Poisson process model is considered, with one year as

a unit of time. However, the exact date becomes important when one wishes to

investigate the distribution of the inter-arrival times.

5.3 Exploratory Data Analysis

In this section, we investigate some properties of the operational loss data.

5.3.1 Time Series of the Loss Process

Figure 5.3.1 exhibits the time series of the 1980-2002 public operational loss data

for which the exact date of occurrence was available. The time series reveal

irregular nature of operational loss arrival process as is seen from varying time

intervals between events. Clustering of events also suggests that the frequency of

operational losses are on a non-homogeneous nature. Magnitudes of losses indicate

high variability in loss amounts.

5.3.2 Loss Frequency Process

One of the difficulties that arise with modeling operational losses has to do with

the irregular nature of the event arrival process. In market risk models, market

positions are recorded on a frequent basis, many times daily depending on the

entity, by marking to market. Price quotes are available daily or for those securi-

ties that are infrequently traded, model-based prices are available for marking a

position to market. As for credit risk, credit ratings by rating agencies are avail-

able. In addition, rating agencies provide credit watches to identify credits that
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Figure 5.1: Exploratory data analysis of 1980-2002 public operational loss data:
time series. (a) “Relationship,” (b) “Human,” (c) “Processes,” (d) “Technology,”
and (e) “External.”
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are candidates for downgrades. In contrast, operational losses occur at irregular

time intervals suggesting a process of a discrete nature. This makes it similar to

the reduced-form models for credit risk, in which the frequency of default (i.e.,

failure to meet a credit agreement) is of non-trivial concern. Hence, while in mar-

ket risk it is needed to model only the return distribution in order to obtain VaR,

in operational risk both loss severity and frequency distributions are important.

Another problem is related to timing and data recording issue. In market and

credit risk models, the impact of a relevant event is almost immediately reflected in

the market and credit returns. In an ideal scenario, banks would know how much

of operational loss would be borne by the bank from an event at the very moment

the event takes place, and would record the loss at this moment. However, from

the practical point of view, this appears nearly impossible to implement, because

it takes time for the losses to accumulate after an event took place. Therefore,

it may take days, months, or even years for the full impact of a particular loss

event to be evaluated. Hence, there is the problem of discrepancy (i.e. a time

lag) between the occurrence of an event and the time at which the incurred loss

is being recorded.

This problem directly affects the method in which banks choose to record their

operational loss data. When bank record their operational loss data, they record

(i) the amount of loss, and (ii) the corresponding date. We can identify three

potential scenarios for the types of date banks might use:

1. Date of occurrence: the date on which the event that has led to operational

losses actually took place.

2. Date on which the existence of event has been identified: the date when bank

authorities realize that an event that has led to operational losses has taken

or is continuing to take place. Recording a loss at this date may be relevant
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in cases when the true date of occurrence is impossible or hard to track.

3. Accounting date: the date on which the total amount of operational losses

due to a past event are realized and fully measured, and the state of affairs

of the event is closed or assumed closed.

Depending on which of the three date types is used, the models for operational

risk and conclusions drawn from them may be considerably different. For example,

in the third case of accounting dates, we are likely to observe cyclicality/seasonal

effects in the time series of the loss data (for example, many loss events would be

recorded around the end of December), while in the first and second cases such

effects are much less likely to be present in the data. Fortunately, however, selec-

tion of the frequency distribution does not have a serious impact on the resulting

capital charge [33]. We will treat the operational risk frequency distributions in

detail in Chapter 7.

5.3.3 Loss Severity Process

Specifics of Operational Loss Severity Data

The first problem related to the loss severity data deals with the sign of the data.

Depending on the movements in the interest or exchange rates, the oscillations in

the market returns and indicators can take either positive or negative sign. This

is different in the credit and operational risk models - usually, only losses (i.e.

negative cash-flows) are assumed to take place.1 Hence, in modeling operational

loss magnitudes, one should either consider fitting the loss distributions that are

defined only on positive values, or should use distributions that are defined on

negative and positive values, truncated at zero.

1Certainly, it is possible that a human error can incur unexpected profits for a bank, but
usually this possibility is not considered.
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The second problem deals with the high degree of dispersion of loss data.

Historical observations suggest that the movements in the market indicators are

generally of relatively low magnitude. Bigger losses are usually attributed to credit

risk. Finally, although most of the operational losses occur on a daily basis and

hence are small in magnitude, the excessive losses of financial institutions are in

general due to the operational losses, rather than credit or market risk-related

losses. We provided in Chapter 3 examples of high-magnitude operational losses

from the financial industry. Empirical evidence indicates that there is a very high

degree of dispersion of the operational loss data, with a range from near-zero to

billions of dollars. In general, dispersion is measured by variance or standard

deviation.2

The third problem concerns the shape of the loss distribution. The shape of

the data for operational risk is very different from that of market or credit risk.

In market risk models, the distribution of the market returns is (often assumed to

be) nearly symmetric around zero. Asymmetric cases refer to the data which is

either left-skewed or right-skewed and/or has two or more peaks of different height.

Operational losses are highly asymmetric, and empirical evidence on operational

risk indicates that the losses are highly skewed to the right, i.e. the right tail of

the loss severity distribution is very long.

Empirical evidence on operational losses also indicate a very large number of

observations close to zero, and a number of observations of a very high magnitude.

The first phenomenon refers to a high kurtosis (i.e. peak) of the data, and the

second one indicates heavy tails (or fat tails). Distributions of such data are often

described as leptokurtic.

2Some very heavy-tailed distributions, such as the heavy-tailed Weibull, Pareto, or α-Stable,
can have an infinite variance.
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Table 5.1: Exploratory data analysis of 1980-2002 public operational loss data:
sample descriptive statistics of “Relationship,” “Human,” “Processes,” “Technol-
ogy,” and “External” loss types.

“Relation.” “Human” “Proces.” “Techn.” “Exter.”

n 849 813 325 67 233
min ($ ×106) 1.07 1.10 1.10 1.13 1.1
max ($ ×106) 6,480 23,630 13,334 830 6,384
mean ($ ×106) 89.86 138.47 285.55 77.43 103.35
median ($ ×106) 14.63 12.32 39.98 11.60 12.89
st. dev. ($ ×106) 360.45 901.51 955.52 136.65 470.24
skewness 11.6429 22.2416 9.1070 3.1761 11.0320
kurtosis 169.9732 570.1188 112.5151 15.7230 140.8799

Sample Descriptive Statistics and Histograms

Table 5.1 presents sample descriptive statistics for the 1980-2002 public opera-

tional loss data. High dispersion in the data is evident from the high standard

deviation figures. Skewness and kurtosis of the data are captured by the sample

skewness and kurtosis coefficients calculated by:

sk =

∑n
j=1(xj − x̄)3

(n− 1)s3
, (5.1)

k =

∑n
j=1(xj − x̄)4

(n− 1)(s4)
, (5.2)

where x̄ is the sample mean, s is the sample standard deviation, and n is the sample

size. Right-skewness of the operational loss data is captured by the large value

of the skewness coefficient; it is also notable that the median value is much lower

than the sample mean. A very high degree of kurtosis (for N(0, 1) distribution, the

kurtosis coefficient equals 3) indicates that a large mass of the data is concentrated

in the lower quantiles of the distribution. The conclusions are supported by the

relative histograms of the datasets, depicted in Figure 5.2.
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Figure 5.2: Exploratory data analysis of 1980-2002 public operational loss data:
relative histograms. (a) “Relationship,” (b) “Human,” (c) “Processes,” (d) “Tech-
nology,” and (e) “External.”
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Quantile-Quantile Plots

Quantile-Quantile (QQ) plots provide a convenient technique to visually investi-

gate a dataset. QQ-plots plot empirical quantiles against the quantiles of a hy-

pothesized distribution fitted to the data. Figure 5.3 demonstrates QQ plots (on

logarithmic scale) for the five datasets against the Exponential quantiles. If the

data are to follow the Exponential distribution (that has exponentially fast decay-

ing right tail), then the plot would coincide with the straight 45◦ line. It is evident

that the upper quantiles of the empirical distribution follow a significantly heavier-

tailed law than the Exponential law, captured by the qq-plot curving downwards

below the 45◦ line. This suggests that the data are very heavy-tailed.

Mean Excess Plots

Heavy-tailedness in the data is further supported by the behavior of mean excess

plots.

Definition 2 (Mean excess function) [62] Let X be a random variable with right

endpoint xF . Then the mean excess function of X is:

e(u) = E[X − u|X > u], 0 ≤ u < xF . (5.3)

The sample mean excess function is then expressed as

en(u) =

∑n
j=1(xj − u)+∑n

j=1 I{xj>u}
. (5.4)

For heavy-tailed data, e(u) typically tends to infinity with an upward-sloping

mean excess plot. For example, for the Lognormal and heavy-tailed Weibull (α <

1) distribution the 2nd derivative is negative, and for the Pareto distribution

it is zero. For the thin-tailed Exponential distribution the mean excess plot is
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Figure 5.3: Exploratory data analysis of 1980-2002 public operational loss data:
log-transformed QQ-plot against Exponential quantiles. (a) “Relationship,” (b)
“Human,” (c) “Processes,” (d) “Technology,” and (e) “External.”
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Figure 5.4: Exploratory data analysis of 1980-2002 public operational loss data:
sample mean excess (en(u)) plot. (a) “Relationship,” (b) “Human,” (c) “Pro-
cesses,” (d) “Technology,” and (e) “External.”
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horizontal. Figure 5.4 exhibits sample mean excess plots for the five datasets. The

upward-sloping plots indicate that heavy-tailedness is persistent in the operational

loss data.

For a detailed empirical analysis with various loss distributions, refer to Chap-

ter 8.

5.3.4 Extreme Value Theory for Extreme Losses

When data are heavy-tailed, two distinct approaches can be undertaken to model

the data:

1. An approach that puts equal importance to low-, medium-, and high-scale

events. Distributions such as Lognormal, Weibull, Gamma, Pareto, or α-

Stable are fitted to the entire dataset.

2. An approach that puts substantial weight on the high quantiles (extreme

observations) and treats low and medium quantiles of the loss distribution

as less crucial.

Heavy-tailedness of the operational loss data dictates that the extreme obser-

vations in the upper quantiles play a significant role in determining the distribu-

tional properties of the data. In particular, the Extreme Value Theory (EVT)

deals with modeling extremes. An application of EVT to modeling operational

risk would be using it to analyze the behavior of losses that exceed a certain high

threshold (Peak Over Threshold (POT) model) or to analyze the properties of the

highest order statistics of the loss distribution in specified time horizons (Block

Maxima method).

POT focuses on extreme events whose magnitude lies above some pre-specified

high threshold. Their distribution is approximated by the Generalized Pareto

Distribution (GPD) [133].
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Figure 5.5: Distribution of X (left) and distribution of the excesses over threshold
u (right).
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Definition 3 (Conditional excess distribution function) Let X be a random vari-

able so that X ∼ F . Let u be a certain threshold and Fu be the excess distribution

of X above u, and let xF be the right endpoint of F so that xF ≤ ∞ (see Figure

5.5). Then Fu is called the conditional excess distribution function:

P (X − u ≤ x|X > u) =
F (u+ x)− F (u)

F (u)
, 0 ≤ x < xF − u. (5.5)

For u sufficiently large, Fu(x) is approximated by GPD by the Pickands-

Balkema-de Haan Theorem [133].

Definition 4 (Generalized Pareto Distribution) The GPD distribution for ex-

tremes is defined by Gξ;µβ:

Gξ;µβ =

 1− (1 + ξ
(

x−µ
β

))− 1
ξ

if ξ 6= 0,

1− e−
x−µ

β if ξ = 0,
(5.6)

where

x ≥ 0 if ξ ≥ 0

0 ≤ x ≤ −1
ξ

if ξ < 0.
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and µ ∈ <, β > 0. Replacing x−µ
β

with z, one arrives at a standard GPD

distribution Gξ.

Applying GPD to operational loss data requires choosing a high threshold

u. In fact, the choice of such threshold is conventionally performed by visual

examination of the mean excess plot, described in Equation (5.3) in §5.3.3, and

selecting u as the point x above which the mean excess plot is roughly linear.

Using Equations (5.3) and (5.6),

e(u) =
β

1− ξ
+

ξ

1− ξ
u, (5.7)

which is a straight line with intercept β/(1− ξ) and slope ξ/(1− ξ). The heavier

the right tail of the distribution (provided that 0 < ξ < 1), the steeper the line.

We believe that EVT suffers from several major pitfalls. Some of them are

discussed in [52] and [57]. The two drawbacks of EVT that we find important are

the following:

• High threshold selection procedure lacks analytical rigor, and the unknown

parameters of GPD would be sensitive to the choice of threshold (see, e.g.,

discussion of this issue in [62]). Quoting [65], “The optimal value of threshold

u to be used is difficult (if not impossible) to obtain.”

• EVT puts most on the distribution of the extremes, and treats low- and

medium-scale losses as having a lesser importance. Using the empirical

distribution function for the low- and medium-scale losses has become almost

a convention in EVT. We believe that all data must equally participate in

the statistical analysis of operational loss data (see, e.g., extensive discussion

in Chapter 8).
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We strongly believe that significant amount of research is required for EVT.

Hence, we do not focus on EVT in this dissertation and instead consider loss

distributions applicable to entire datasets.

POT model has been examined for operational risk modeling by [59] [61] [124]

[123] [127] [34] [35] [36], among others. For general financial loss models, POT

has been examined in [62] [118] [119] [121] [122] [120] [52] [65] [57] [58] [80] [79]

[98] [115], among others.

5.3.5 The Normality Assumption

The Gaussian distribution is often used to model market risk and credit risk. De-

spite being easy to work with and having attractive features (such as stability

under linear transformations), the Gaussian distribution implies a number of se-

rious assumptions on the loss data, casting doubts regarding its applicability for

the operational risk modeling. They include the following:

• The Gaussian distribution is characterized by two parameters, µ and σ,

i.e., the mean and the standard deviation. Hence, the Gaussian assump-

tion is useful for modeling the distribution of events that are symmetric

around their mean. It has been empirically demonstrated that the opera-

tional losses are right-skewed and therefore moments higher than the 2nd

become important.

• In most cases (except for the cases when the mean is very high), the use

of the Gaussian distribution allows for the occurrence of negative values.

This is not a desirable property in the context of operational risk, because

negative losses are usually not possible.3

3Certainly, it is possible to use a truncated (at zero) version of the Gaussian distribution to
fit operational losses. Truncated distributions will be presented in Chapter 8.
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• More importantly, the Gaussian distribution has an exponential tail decay,

F (x) ∝ e−x2
. Such light-tailedness property ensures that the tail events are

assigned a near-zero probability. Such assumption is violated in practice.

In this light, it is unlikely that the Gaussian distribution would find much

application for the assessment of operational risk. Heavier tailed distributions

such as Lognormal, Weibull, and even Pareto and α-Stable, ought to be considered.

The large class of α-Stable distributions will be discussed in Chapter 6.

5.4 Compound Poisson Process Model

The LDA assumes an actuarial type model for the aggregated operational losses

for a particular “business line/ event type” combination. The losses are assumed

to follow a stochastic process {St}t≥0 described by:

St =
Nt∑

k=0

Xk, Xk
iid∼ Fγ, (5.8)

in which the random sequence of loss magnitudes {Xk} follows a cumulative dis-

tribution function (cdf) Fγ and the density fγ with the parameter set γ, and in

which the counting process Nt is assumed to take a form of a homogeneous Pois-

son process (HPP) with intensity λ > 0 (or a non-homogeneous Poisson process

(NHPP) with intensity λ(t) > 0). Fγ belongs to a sufficiently well-behaved para-

metric family of continuous probability distributions, and fγ is defined on <>0.

Independence between frequency and severity distributions is assumed under this

model, but can be further relaxed (see discussion in Chapter 11). The cdf of the
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compound Poisson process is given by:

P (St ≤ s) =


∑∞

n=1 P (Nt = n) F n∗
γ (s) s > 0

P (Nt = 0) s = 0

(5.9)

where F n∗
γ denotes the n-fold convolution of F with itself.

Definition 5 (Subexponential distribution) A cdf F is subexponential (F ∈ S) if

for all n ≥ 2

lim
x→∞

F n∗(x)

F (x)
= n. (5.10)

Subexponentiality is a property possessed by heavy-tailed distributions, in

which the maximum observation Mn = max{X1, X2, . . . , Xn} “determine” the

behavor of the entire sum Sn = X1 +X2 + . . .+Xn: for all n ≥ 2,

P (Sn > x) ∼ P (Mn > x), x→∞. (5.11)

For F ∈ S, the following approximation holds:

P (St > x) ∼ ENt · F (x), x→∞. (5.12)

This approximation becomes important in the Value-at-Risk modeling that we

introduce in the next section. See also [38].

5.5 Value-at-Risk

Model of Equation (5.8) can be used to determine the required operational capital

charge imposed by regulators. Value-at-Risk (VaR) is the predicted worst-case loss
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at a specific confidence level over a certain period of time [139]. VaR is measured

as the (1−α)×100th quantile of the cumulative loss distribution (Equation (5.9))

over a one year period 4t.

Definition 6 (Value-at-Risk) For a given confidence level 1−α and a prespecified

time horizon 4t, VaR is defined as:

VaR4t,1−α := G−1
4t(1− α) = sup{s4t : G(s4t) ≤ 1− α}, (5.13)

where G(·) is the cdf of the cumulative loss process.

Hence, VaR is the solution to:

P (S4t > VaR4t,1−α) = α. (5.14)

Combining Equations (5.14) and (5.12), we obtain:

VaR4t,1−α ∼ F−1

(
1− α

EN4t

)
. (5.15)

Substituting F−1(·) of a hypothesized individual loss distribution in Equation

(5.15), one can easily obtain the desired VaR value for heavy-tailed distributions.

See Chapter 8 in which such approximation is used.

In the context of operational risk measurement, VaR was discussed by the

Basel Committee (2001-2003) and in works such as [46] [3] [45] [102] [56] [75] [124]

[61] [38] [39].
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5.6 Conditional Value-at-Risk and Coherent Risk

Measures

VaR has been criticized by [163] [162] [160] [161], among others. An alternative

risk measure is Conditional Value-at-Risk (CVaR).

Definition 7 (Conditional Value-at-Risk) For a given confidence level 1−α and

a prespecified time horizon 4t, CVaR is defined as:

CVaR4t,1−α := E [S4t|S4t > VaR4t,1−α] . (5.16)

CVaR is also called Expected Tail Loss (ETL) and Expected Shortfall (ES).

CVaR captures tail events better than VaR [18] [157] [141] and also satisfies all

properties of coherent risk measures. Denote the risk set by L = {X,X1, X2, . . .},

and let r > 0 be the total return in any state of nature at date T and ρ be the

risk measure associated to an acceptance set. Then coherent risk measures must

satisfy the four axioms [8]:

(A1) (Translation Invariance)

∀X ∈ L, ∀a ∈ < : ρ(X + ar) = ρ(X)− a.

(A2) (Subadditivity)

∀X1, X2 ∈ L : ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).

(A3) (Positive Homogeneity)

∀X ∈ L, λ ≥ 0 : ρ(λX) = λρ(X).

(A4) (Monotonicity)

∀X1, X2 ∈ L : ρ(X1) ≤ ρ(X2).
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A1 states that adding (subtracting) the sure initial amount a to the initial

position and investing it in the reference instrument decreases (increases) the risk

measure by a. A2 states that diversification of business activities or an absence

of “firewalls” among different units results in the risk measure at most as high

as in the case when these are independent. A3 does not account for netting

or diversification effect and says that, for example, two separate firms with an

identical position account for risk twice as high.

VaR may fail A2 and may result in overestimation of the capital charge [140]

[65] [64]; see also examples in [58] [129]. See applications of VaR and CVaR in

Chapter 8 and Chapter 10.
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Chapter 6

α-Stable (Paretian) Distributions

“Once is happenstance. Twice is coincidence. Three times is enemy

action.”

– Ian L. Fleming (1908-1964)

6.1 Introduction

Operational losses due to errors and omissions, physical loss of securities, nat-

ural disasters, and internal fraud are infrequent in nature but can have serious

financial consequences for an institution. Such “low frequency/ high severity”

operational losses can be extreme in magnitude when compared to the rest of

the data. According to BIS [26, Annex 1], “The internal risk measurement sys-

tem must capture the impact of infrequent, but potentially severe, operational risk

events. That is, the internally generated risk measure must accurately capture the

“tail” of the operational risk loss distribution.”

Loss distributions, such as Lognormal, Gamma, and Weibull, are classified

as moderately heavy-tailed and thus may not be sufficient to capture the infre-

quent but potentially severe operational loss events. In this chapter we discuss
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a wide class of α-Stable distributions.1 We will review their definition and basic

properties and illustrate some empirical studies with operational risk data. The

discussion in this chapter closely follows [136].

6.2 Definition of an α-Stable Random Variable

We begin with a definition of an α-Stable random variable. Extensive analysis of

α-Stable distributions and their properties can be found in [147] and [137]; see

also [153] [154] [138]. Let X1, X2, . . . , Xn be iid random variables, independent

copies of X.

Definition 8 (α-Stable random variable) X is said to follow an α-Stable distri-

bution if there exist a positive constant Cn and a real number Dn such that the

following relation holds:

X1 +X2 + . . .+Xn
d
= CnX +Dn.

The constant Cn = n1/α dictates the stability property. α = 2 refers to the

Gaussian case. In subsequent discussions of the α-Stable distributions in this

chapter, we restrict ourselves to the non-Gaussian case, i.e., 0 < α < 2. We

denote its density by Sα(β, σ, µ).

For the general case, the density does not have a closed form. The distribution

is expressed by its characteristic function:

E[eitX ] =


exp

(
−|σt|α(1− iβ(sign t) tan πα

2
) + iµt

)
, α 6= 1

exp
(
−σ|t|(1 + iβ 2

π
(sign t) ln |t|) + iµt

)
, α = 1,

(6.1)

1α-Stable distributions are often referred to as Stable Paretian distributions.
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Figure 6.1: α-Stable densities: effects of changing α and β on the form of the
α-Stable density.
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where

sign t =


1 when t ≥ 0,

0 when t = 0,

−1 when t ≤ 0.

The distribution is characterized by four parameters γ = {α, β, σ, µ} [147]:2

α (α ∈ (0, 2)) : index of stability or the shape parameter,

β (β ∈ [−1,+1]) : skewness parameter,

σ (σ ∈ <+) : scale parameter,

µ (µ ∈ <) : location parameter.

Because of the four parameters, the distribution is highly flexible and suitable

for modeling non-symmetric, highly kurtotic, and heavy-tailed data. Figure 6.1

2The parameterization of α-Stable distribution is not unique. An overview of the different
approaches can be found in [164].
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illustrates the effects of the shape and skewness parameters on the shape of the

distribution, other parameters kept constant. As is evident from part a) of Figure

6.1, a lower value for α is attributed to heavier tails and higher kurtosis.

The exceptions of closed-form densities are three special cases: the Gaussian

case (α = 2), Cauchy case (α = 1, β = 0), and Lévy case (α = 1/2, β = ±1) with

the following densities:

Gaussian (α = 2) f(x) = 1
2σ
√

π
e−

(x−µ)2

4σ2 , −∞ < x <∞,

Cauchy (α = 1, β = 0) f(x) = σ

π
(
(x−µ)2+σ2

) , −∞ < x <∞,

Lévy (α = 1/2, β = ±1) f(x) =
√

σ√
2π(x−µ)3/2 e

− σ
2(x−µ) , µ < x <∞.

Early applications of the α-Stable distribution to financial data include [68]

[70] [69] [71] (stock market prices and portfolio analysis), [137] [135] (financial

time series), [43] (non-life insurance), and [31] (real estate market).

6.3 Useful Properties of an α-Stable Random

Variable

We briefly present some important properties of the α-Stable distribution [147].3

Property 1 (Power tail) The power tail decay property means that the tail of the

density function decays like a power function (slower than the exponential decay),

which is what allows the distribution to capture extreme events in the tails:

P (|X| > x) ∝ C · x−α, x→∞,

3The properties of α-Stable distribution are treated in depth in [147] and [137].
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where the constant C = Cα
1+β

2
σα with

Cα =

(∫ ∞

0

x−α sin xdx

)−1

=


1−α

Γ(2−α) cos(πα/2)
if α 6= 1,

2
π

if α = 1.

Property 2 (Moments) Raw moments satisfy the property:

E|X|p <∞ for any p ∈ (0, α),

E|X|p = ∞ for any p ≥ α.

Property 3 (Mean) Because of Property 2, the mean is finite only for α > 1:

E(X) = µ for α ∈ (1, 2),

E(X) = ∞ for α ∈ (0, 1].

Furthermore, the second and higher moments are infinite, implying infinite vari-

ance, skewness, and kurtosis.

The next stability property is a useful and convenient property and dictates

that the distributional form of the variable is preserved under linear transfor-

mations. The stability property is governed by the stability parameter α in the

constant Cn (which appeared earlier in the definition of an α-Stable random vari-

able): Cn = n1/α. As was stated earlier, smaller values of α refer to a heavier-tailed

distribution. The standard Central Limit Theorem (CLT) does not apply to the

non-Gaussian case: appropriately standardized large sum of iid random variables

converges to an α-Stable random variable instead of normal random variable.

Property 4 (Stability) Suppose that X1, X2, . . . , Xn are distributed Sα(βi, σi, µi),
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i = 1, 2, . . . , n. Then, for some real constant a (a 6= 0):

Y :=
∑n

i Xi ∼ Sα

(∑n
i βiσ

α
i∑n

i σα
i
, (
∑n

i σ
α
i )

1/α
,
∑n

i µi

)
;

Y := X1 + a ∼ Sα (β1, σ1, µ1 + a) ;

Y := aX1 ∼

 Sα ((sign a) β1, |a|σ1, aµ1) for α 6= 1,

Sα

(
(sign a) β1, |a|σ1, aµ1 − 2

π
a(ln a)σ1β1

)
for α = 1.

Y := −X1 ∼ Sα (−β1, σ1, µ1) .

6.4 Estimating Parameters of the α-Stable Dis-

tribution

Since the density of the α-Stable distribution does not exist in closed form, the

traditional MLE procedure cannot be applied. Two methodologies are commonly

used to estimate the four parameters:

• Sample Characteristic Function Approach: Use the observed data to eval-

uate the sample characteristic function and estimate the unknown parame-

ters such that the distance between the sample and theoretical characteristic

functions is minimized.

• Numerical Approximation of the Density Function Approach: Approximate

the density function using the one-to-one correspondence relation between

the characteristic function and the density.

6.4.1 Sample Characteristic Function Approach

Developed by [134], this approach is based on the comparison of the theoretical

characteristic function with the sample characteristic function. In the first step of

the procedure, for a given sample x = {x1, x2, . . . , xn}, the sample characteristic
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function is calculated as:

φ̂(t) =
1

n

n∑
k=1

eitxk . (6.2)

In the second step, mathematical optimization software is used to fit the theoret-

ical characteristic function to the sample one. The estimates γ̂ = {α̂, β̂, σ̂, µ̂} are

found so that the distance between the sample and theoretical characteristic func-

tions is minimized. A detailed description of this approach can be found in [110].

See also [100], in particular for the symmetric α-Stable case (see §6.5.1).

6.4.2 Numerical Approximation of the Density Function

Approach

Suggested by [54] [55], this approach is based on the numerical approximation

of the density function and then using MLE to evaluate the unknown parame-

ters. In the first step of the procedure, the density function is obtained from the

characteristic function using the Fourier inversion method:

f(x) =
1

2π

∫ +∞

−∞
e−itxφ(t)dt. (6.3)

This task can be performed using the Fast Fourier Transform (FFT) algorithm

[125] [130]. In the second step, MLE of the unknown parameters can be performed

using a numerical optimization software, resulting in the choice of the parameter

set γ̂ = {α̂, β̂, σ̂, µ̂} that maximizes the likelihood function.
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6.5 Useful Transformations of α-Stable Random

Variables

For α > 1 or |β| < 1, the support of the α-Stable distribution is on <. It would be

unwise to directly apply this distribution to operational loss data that take only

positive values. In this light, we suggest using one of three transformations of the

α-Stable distribution: symmetric α-Stable distribution, logα-Stable distribution,

and truncated α-Stable distribution.

6.5.1 Symmetric α-Stable Random Variable

The symmetric α-Stable distribution (we denote it by SαS(σ)) is symmetric and

centered around zero. Its characteristic function has a simple form:

E[eitX ] = e−σα|t|α . (6.4)

To apply SαS to the operational loss severity data, one can do a simple trans-

formation to the original dataset: Y = [−X; X]. Then α and σ are the only

two parameters of the density fX(x) ∈ Sα(0, σ, 0). See Chapter 8 where such

distribution is applied to operational loss data.

6.5.2 logα-Stable Random Variable

It is often convenient to work with the natural logarithm transformation of the

original data. A random variable X is said to follow a logα-Stable distribution

(we denote it by logSα(β, σ, µ)) if the natural logarithm of the original data follow

an α-Stable distribution. Its density is
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fX(x) =
g(log x)

x
, g ∈ Sα(β, σ, µ). (6.5)

Fitting logα-Stable distribution to data is appropriate when there is reason

to believe that the data are very heavy-tailed, and the regular α-Stable distribu-

tion may not be sufficient to capture the heavy tails. See Chapter 8 where such

distribution is applied to operational loss data.

6.5.3 Truncated α-Stable Random Variable

Another scenario would involve a restriction on the density, rather than a trans-

formation of the original dataset. The support of the α-Stable distribution can be

restricted to <+ to avoid the possibility of having a positive probability of values

below zero in the case when β < 1. Then, the estimation part would involve

fitting a left-truncated α-Stable distribution of the form:

f(x) =
g(x)

1−G(0)
× Ix>0,

where

Ix>0 =

 1 if x > 0

0 if x ≤ 0,

g(x) is the Sα(β, σ, µ) density, and G(0) is its cdf evaluated at 0. Fitting the left-

truncated distribution to the data means fitting the right tail of the distribution.
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6.6 Applications to Operational Loss Data

Currently, applications of α-Stable distribution to the operational risk data are

limited. Early works suggesting applying the distribution to operational loss data

are due to [124] [123].

6.6.1 Empirical Study with 1980-2002 Public Operational

Loss Data

We present results of an empirical application of the α-Stable distribution to

modeling operational loss data [39]. The datasets are described in Chapter 5

§5.2 p.31. Histograms of the samples presented in Chapter 5 §5.3.3 reveal the

leptokurtic nature of the data: a very high peak is observed close to zero, and an

extended right tail indicates the right-skewness and high dispersion of the data

values. Heavytailedness is also suggested by the QQ-plots deviating from the

straight line in the upper tail and the upward-sloping near-straight-line shape of

the mean-excess plots (that suggest Pareto-like tail). This suggests that fitting

an α-Stable distribution may be a reasonable approach.

The data are subject to minimum recording thresholds of $1 million in nominal

value. Therefore, conditional left-truncated loss distribution was fitted to the data

using the method of restricted MLE.4

Figures 6.2 and 6.3 illustrate QQ-plots for the fitted logα-Stable and sym-

metric α-Stable distributions. The former appears to be a remarkably good fit

for the “Relationship,” “Processes,” and “Technology” losses, suggesting that the

distribution of these three datasets is severely heavy-tailed. The remaining two

loss types – “Human” and “Technology” – are well captured by the symmetric

α-Stable distribution. Unfavorable fit of the logα-Stable distribution to the “Hu-

4See Chapter 8 for a more comprehensive empirical analysis.
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Figure 6.2: QQ-plots (logarithmic scale) for logα-Stable distribution fitted to the
1980-2002 public operational loss data. (a) “Relationship,” (b) “Human,” (c)
“Processes,” (d) “Technology,” and (e) “External.”
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Figure 6.3: QQ-plots (logarithmic scale) for symmetric α-Stable distribution fitted
to the 1980-2002 public operational loss data. (a) “Relationship,” (b) “Human,”
(c) “Processes,” (d) “Technology,” and (e) “External.”
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Table 6.1: MLE parameter estimates for logα-Stable and symmetric α-Stable
distributions fitted to operational loss data.

“Relationship” “Human” “Processes” “Technology” “External”

logSα

α 1.9340 1.4042 2.0000 2.0000 1.3313
β -1 -1 0.8195 0.8040 -1
σ 1.5198 2.8957 1.6476 1.9894 2.7031
µ 15.9616 10.5108 17.1535 15.1351 10.1928

SαS

α 0.6592 0.6061 0.5748 0.1827 0.5905
σ 1.0·107 0.71·107 1.99·107 0.17·107 0.71·107

man” and “Technology” type losses and of the symmetric α-Stable distribution to

the “Technology” type losses is likely to be due to Matlab numerical difficulties.

Parameter estimates for logα-Stable and symmetric α-Stable distributions are

presented in Table 6.1. Goodness-of-fit (GOF) test statistic and the correspond-

ing p-values for composite GOF tests5 for these and other loss distributions are

summarized in Table 6.2. Their densities are defined in Chapter 8 §8.5.2.

On the basis of the GOF p-values, in majority of cases either logα-Stable or

symmetric α-Stable, or even both, resulted in the highest p-values, suggesting

the best fit. See also a detailed discussion of the GOF results for a variety of

distributions in Chapter 9 §9.4. This supports the conjecture that the overall

distribution of operational losses are very heavy-tailed and are well captured by

the variations of the α-Stable distribution.

It is notable that due to the infinite second moment (and, for α ∈ (0, 1],

also first moment), Monte Carlo methods may result in generation of samples

5See Chapter 9 for the description of the statistics.
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Table 6.2: Goodness-of-fit tests for operational loss data. p-values are given in
square brackets.

KS V AD ADup AD2 AD2
up W2

“Relationship”

Exp 11.0868 11.9973 1.3·107 1.2·1023 344.37 1.2·1014 50.5365
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.8056 1.3341 2.6094 875.40 0.7554 4.6122 0.1012
[0.082] [0.138] [0.347] [0.593] [0.043] [0.401] [0.086]

Weib 0.5553 1.0821 3.8703 2.7·104 0.7073 24.5068 0.0716
[0.625] [0.514] [0.138] [0.080] [0.072] [0.032] [0.249]

logWeib 0.5284 1.0061 3.0718 7332.07 0.4682 10.1322 0.0479
[0.699] [0.628] [0.255] [0.186] [0.289] [0.102] [0.514]

GPD 1.4797 2.6084 3.5954 374.68 3.7165 22.1277 0.5209
[<0.005] [<0.005] [0.172] [>0.995] [<0.005] [0.048] [<0.005]

Burr 1.3673 2.4165 3.3069 371.65 3.1371 22.0374 0.4310
[0.032] [<0.005] [0.309] [0.960] [<0.005] [0.019] [0.011]

logSα 1.5929 1.6930 3.8184 1075.30 3.8067 10.1990 0.7076
[0.295] [0.295] [0.275] [0.041] [0.290] [0.288] [0.292]

SαS 1.1634 2.0695 1.4·105 5.0·1016 4.4723 2.6·1014 0.3630
[0.034] [<0.005] [>0.995] [0.971] [0.992] [<0.005] [<0.005]

“Human”

Exp 14.0246 14.9145 2.4·106 1.1·1022 609.15 3.0·1012 80.3703
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.8758 1.5265 3.9829 1086.16 0.7505 4.5160 0.0804
[0.032] [0.039] [0.126] [0.462] [0.044] [0.408] [0.166]

Weib 0.8065 1.5439 4.3544 3.2·104 0.7908 8.6610 0.0823
[0.093] [0.051] [0.095] [0.068] [0.053] [0.112] [0.176]

logWeib 0.9030 1.5771 4.1343 1.1·104 0.7560 4.5125 0.0915
[0.074] [0.050] [0.115] [0.160] [0.115] [0.392] [0.217]

GPD 1.4022 2.3920 3.6431 374.68 2.7839 23.7015 0.3669
[<0.005] [<0.005] [0.167] [>0.995] [<0.005] [0.051] [<0.005]

Burr 2.2333 3.1970 4.7780 255.91 7.0968 46.3417 1.2830
[0.115] [0.115] [0.174] [>0.995] [0.115] [0.119] [0.115]

logSα 9.5186 9.5619 36.2617 9846.30 304.61 4198.90 44.5156
[0.319] [0.324] [0.250] [0.354] [0.312] [0.215] [0.315]

SαS 1.1628 2.1537 5.8·105 4.3·1017 11.9320 3.3·1011 0.2535
[0.352] [0.026] [0.651] [0.351] [0.971] [0.436] [0.027]

(Continued on next page)
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Table 6.2 (Continued from previous page)

KS V AD ADup AD2 AD2
up W2

“Processes”

Exp 7.6043 8.4160 3.7·106 1.7·1022 167.61 6.6·105 22.5762
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.6584 1.1262 2.0668 272.61 0.4624 4.0556 0.0603
[0.297] [0.345] [0.508] [0.768] [0.223] [0.367] [0.294]

Weib 0.6110 1.0620 1.7210 2200.75 0.2069 2.2340 0.0338
[0.455] [0.532] [0.766] [0.192] [0.875] [0.758] [0.755]

logWeib 0.5398 0.9966 1.6238 658.42 0.1721 1.4221 0.0241
[0.656] [0.637] [0.832] [0.343] [0.945] [0.977] [0.918]

GPD 1.0042 1.9189 4.0380 148.24 2.6022 13.1082 0.3329
[<0.005] [<0.005] [0.104] [>0.995] [<0.005] [0.087] [<0.005]

Burr 0.5634 0.9314 1.6075 364.08 0.2639 325.76 0.0323
[0.598] [0.800] [0.841] [0.429] [0.794] [0.844] [0.840]

logSα 0.6931 1.1490 2.0109 272.57 0.4759 328.39 0.0660
[0.244] [0.342] [0.534] [0.786] [0.202] [0.361] [0.258]

SαS 1.3949 1.9537 3.3·105 2.5·1017 6.5235 6.8·1014 0.3748
[0.085] [0.067] [0.931] [0.530] [0.964] [0.193] [0.102]

“Technology”

Exp 3.2160 3.7431 27.6434 1.4·106 27.8369 780.50 2.9487
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 1.1453 1.7896 2.8456 41.8359 1.3778 6.4213 0.2087
[<0.005] [0.005] [0.209] [0.994] [<0.005] [0.067] [<0.005]

Weib 1.0922 1.9004 2.6821 52.5269 1.4536 4.8723 0.2281
[<0.005] [<0.005] [0.216] [0.944] [<0.005] [0.087] [<0.005]

logWeib 1.1099 1.9244 2.7553 49.2373 1.5355 5.2992 0.2379
[<0.005] [<0.005] [0.250] [0.976] [<0.005] [0.085] [<0.005]

GPD 1.2202 1.8390 3.0843 33.4298 1.6182 8.8484 0.2408
[<0.005] [<0.005] [0.177] [>0.995] [<0.005] [0.067] [<0.005]

Burr 1.1188 1.9374 2.6949 28.4827 2.0320 10.5469 0.3424
[0.389] [0.380] [0.521] [>0.995] [0.380] [0.401] [0.380]

logSα 1.1540 1.7793 2.8728 41.7454 1.3646 6.4919 0.2071
[<0.005] [<0.005] [0.250] [0.976] [<0.005] [0.060] [<0.005]

SαS 2.0672 2.8003 2.7·105 3.6·1016 19.6225 7.2·1010 1.4411
[>0.995] [>0.995] [>0.995] [>0.995] [>0.995] [>0.995] [0.964]

(Continued on next page)
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Table 6.2 (Continued from previous page)

KS V AD ADup AD2 AD2
up W2

“External”

Exp 6.5941 6.9881 4.4·106 2.0·1022 128.35 5.0·107 17.4226
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.6504 1.2144 2.1702 316.20 0.5816 2.5993 0.0745
[0.326] [0.266] [0.469] [0.459] [0.120] [0.589] [0.210]

Weib 0.4752 0.9498 2.4314 4382.68 0.3470 5.3662 0.0337
[0.852] [0.726] [0.384] [0.108] [0.519] [0.164] [0.431]

logWeib 0.6893 1.1020 2.2267 3130.56 0.4711 4.1429 0.0563
[0.296] [0.476] [0.481] [0.128] [0.338] [0.283] [0.458]

GPD 0.9708 1.8814 2.7742 151.94 1.7091 8.6771 0.2431
[0.009] [0.005] [0.284] [0.949] [<0.005] [0.106] [<0.005]

Burr 1.3266 2.0385 2.8775 113.13 2.8954 15.4410 0.5137
[0.050] [0.048] [0.329] [0.989] [0.048] [0.064] [0.048]

logSα 7.3275 7.4089 37.4863 4708.71 194.74 3132.60 24.3662
[0.396] [0.458] [0.218] [0.354] [0.284] [0.128] [0.366]

SαS 0.7222 1.4305 1.1·105 3.4·1016 1.7804 1.2·1010 0.1348
[0.586] [0.339] [0.990] [0.797] [0.980] [0.841] [0.265]

with unfeasibly high loss values. This complicates the interpretation of the mean,

variance, VaR, and CVaR values. One approach would be to use right-truncated

distributions by fixing an upper bound for the admissible support. In the banking

industry, such threshold may be determined by, for example, the total value of

assets. This remains a topic for future research.

6.6.2 Empirical Study of Inter-Arrival Times with 1950-

2002 Public Operational Loss Data

In the second study, α-Stable distribution was fitted to the inter-arrival times. A

heavy-tailed inter-arrival times distribution may indicate that there are clusters
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Table 6.3: Goodness-of-fit test statistics for the inter-arrival times distribution in
empirical study with 1950-2002 public operational loss data.

F Test “Relation.” “Human” “Process.” “Technol.” “External”

Exp KS 8.1133 6.6606 4.1107 1.5707 4.3121

AD 39.4554 332.1013 33.4513 19.0028 26.3911
LN KS 7.2730 6.2306 3.6325 1.5707 4.3121

AD 26.7241 24.0011 17.4684 16.0836 19.3557
GPD KS 7.2730 5.4291 3.7369 1.5707 4.3121

AD 26.1898 11.2737 19.5844 13.0826 24.2408
Sα KS 2.4008 2.3065 1.5376 0.6420 1.2814

AD 5.3100 5.2508 3.8652 1.8474 2.9118
Cauchy KS 6.2209 6.4260 4.5875 2.1848 3.9933

AD 42.6918 36.0395 36.3164 26.6083 32.0503
SαS KS 2.9045 2.6095 1.2682 0.5184 1.3712

AD 5.8113 5.2386 2.5364 1.0479 2.7436

of loss events in time that would violate the simple Poisson assumption on the

arrival process.

Table 6.3 reports the goodness-of-fit statistics for several distributions fitted to

the inter-arrival times. Since the exact date of occurrence was unavailable for some

data points, only those for which such information was available were included

into the analysis. This resulted in sample sizes for the “Relationship,” “Human,”

“Processes,” “Technology,” and “External” data types of 554, 597, 199, 31, and

160 points, respectively. The Cauchy and symmetric α-Stable distributions were

fitted to the symmetrized data. It is clear from the Table 6.3 that, based on the

low KS statistic values, the α-Stable and symmetric α-Stable distribution fit the

data very well compared with alternative candidate distributions. In particular,

the Exponential distribution shows a poor fit. This may be an indication that

frequency distribution does not follow a homogeneous Poisson process and exhibits

a pronounced trend of clustering of events. See also discussion in Chapter 7.
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Chapter 7

Modeling Operational Frequency

with Cox Processes

7.1 Introduction

We discussed in Chapter 5 that the loss arrival process for operational risk pos-

sesses an irregular nature. It is reasonable to assume that, in most situations,

operational risk-related events arrive independently from each other. A common

model to characterize such a process is a Poisson process. In the simplest scenario,

the mean number of events per unit of time is constant in time. In practice, how-

ever, it is plausible to expect that the mean number of events in a given time

interval does not remain constant, but behaves in a more random fashion or even

evolves and changes with time.

In this chapter we review some properties of simple homogeneous and non-

homogeneous Poisson processes.
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7.2 Cox Processes

We begin with a definition of a Poisson point process.

Definition 9 (Poisson process) A stochastic process Nt, t ≥ 0 is called Poisson

if it satisfies the following properties:

1. Nt has independent increments, i.e., for any n ∈ N, any t0, t1, . . . , tn such

that 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn < ∞, the random variables Nt1 − Nt0 , Nt2 −

Nt1 , . . . , Ntn −Ntn−1 are independent;

2. Nt is homogeneous, i.e., for any s ≥ 0, t ≥ 0 and h > 0, the random

variables Nt+h −Nt and Ns+h −Ns are identically distributed;

3. N0 = 0;

4. the number of jumps in an interval t is Poisson distributed with mean λt, λ >

0, i.e., for all t, s > 0

P (Nt+s −Ns = n) =
(λt)ne−λt

n!
, n = 0, 1, . . . . (7.1)

If λ (i.e., the intensity rate) is a constant, we have a homogeneous Poisson

process (HPP) that has a cumulative intensity λt. The mean of a homogeneous

Poisson distribution equals the variance. When λ is not constant, we have a non-

homogeneous Poisson process (NHPP) or Cox process that have a cumulative

intensity Λ(t). Because the process itself and the measure λ are stochastic, Cox

processes are often called doubly stochastic Poisson processes.

Definition 10 (Random measure) A random process Λ(t), t ≥ 0 is called a ran-

dom measure if it has nondecreasing sample paths and satisfies:

1. Λ(0) = 0;
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2. Λ(t) <∞ a.s. for 0 < t <∞.

Definition 11 (Cox process) A stochastic process Nt, t ≥ 0 is called a Cox pro-

cess (or an non-homogeneous Poisson process) with intensity measure Λ(t) if

• Nt has independent increments;

• The increment Nt−Ns such that 0 ≤ s < t <∞ has the Poisson distribution

with parameter Λ(t)− Λ(s).

The cumulative intensity Λ(t) can be conveniently expressed as:

Λ(t) =

∫ t

0

λ(τ)dτ, τ > 0, (7.2)

for a non-negative instantaneous intensity function λ(τ).

Properties of Cox processes are analyzed in [81] [82] [83] [16], among others.

We stress that a necessary requirement for applying such advanced models to

operational loss data is the availability of extensive datasets.

7.2.1 Mixed Poisson Processes

If Λ(·) has a distribution, then Nt is a mixed Poisson process. Due to a non-

constant intensity rate, mixed Poisson models allow for an extra variability of the

underlying Poisson random variable. For example, it can be easily verified that a

mixed Poisson distribution with the intensity rate distributed as a Gamma random

variable is a Hypergeometric random variable; the variance of a Hypergeometric

random variable is greater than the mean.
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7.2.2 Non-Homogeneous Poisson Process with Stochastic

Intensity

Unlike mixture distributions in which λ follows a particular distribution of its own,

in non-homogeneous Poisson processes with stochastic intensity λ is believed to

evolve with time in a fashion that can be expressed by a mathematical function,

λ(t). For example, a possible cyclical component in the time series of the number

of loss events may be captured by a sinusoidal rate function, an upward-sloping

tendency may be captured by a quadratic function, and so on. Moreover, devi-

ations from an assumed (or fitted) deterministic model may be further captured

by a random stochastic process, such as Brownian motion.

We propose the following algorithms that allow one to determine an optimal

stochastic model for operational loss frequency distribution. Later in this chapter

we will present two examples with loss data that demonstrate the success of such

algorithms.

Algorithm 1:

1. Split the total time frame [0, t], into m small time intervals of equal length,

such as days, months, or quarters;1

2. Calculate the total number of loss events that has occurred within each

interval;

3. Construct the following plot:

a) On the horizontal axis that represents time, locate the numbers 1 : m;

b) On the vertical axis that represents number of events, locate the cu-

mulative number of loss events;

1Note that the frequency distribution will change depending on the chosen intervals.
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4. The resulting plot represents the cumulative intensity function Λ(t) =
∫ t

0
λ(s)ds;

5. Choose a function that fits best the plot, using the mean square error (MSE)

or the mean absolute error (MAE) minimization technique.

Algorithm 2:

1. Sort the data so that the dates of the loss events are in increasing order;

2. Calculate the inter-arrival times between the dates in days and then divide

by 3652 in order to express the inter-arrival times in terms of years;

3. Construct the following plot:

a) Split the horizontal axis that represents total time frame [0, t], into

n − 1 small time intervals, the intervals being the cumulative inter-

arrival times between n total number of loss events;

b) On the vertical axis that represents number of events, locate the num-

bers 1 : n;

4. The resulting plot represents the cumulative intensity function Λ(t) =
∫ t

0
λ(s)ds;

5. Choose a function that fits best the plot, using the Mean Squared Error

(MSE) or the Mean Absolute Error (MAE) minimization technique.

7.3 Renewal Processes

Sometimes, instead of working with the distribution of the number events in a

fixed time interval, it may be more convenient to work with the inter-arrival

times’ distribution.
2We use 365 because we are interested in the actual number of days between the occurrences

of the events, rather than the number of working days in which case we would use 250 days
instead.
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Definition 12 (Renewal process) Let {Yj}j≥1 be independent distances between

successive points of a point process Nt. If the random variables {Yj}j≥1 are iden-

tically distributed, then Nt is a renewal process.

Cox process can be represented with renewal process. Let Vk = Y1 +Y2 + . . .+

Yk, k ≥ 1. Let N1
t be a standard Poisson process so that N1

t = N(Λ−1(t)) where

Λ−1(t) = sup{s : Λ(s) ≤ t}. ThenN1
t = sup{k ≥ 1 : Λ(Vk) ≤ t} and V ∗

k := Λ(Vk)

are the jump points of N1
t . Hence, Nt that is controlled by a random measure

Λ(t) is a Cox process if and only if the random variables V ∗
1 , V

∗
2 −V ∗

1 , V
∗
3 −V ∗

2 , . . .

are iid Exponentially distributed.

Modeling operational frequency distribution with renewal processes may plau-

sible when we have reasons to believe that the operational loss events are inde-

pendent, there is no clustering of events, and there occur no regime switching in

time.

7.4 Empirical Studies with Operational Frequency

Data

A simple Poisson assumption is prevalent in empirical studies with operational

loss data. See, for example, [34] [56] [46] [13] [38] [114] [49] [50]. Hypergeometric

distribution has been examined by [46] [127] [50].

7.4.1 Empirical Study with 1980-2002 Public Operational

Loss Frequency Data

We examine operational loss data for the period 1980 to 2002 for five loss types ob-

tained from a major European data provider.3 For the description of the dataset,

3Details of this study are presented in [39].
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Figure 7.1: Annual number of losses (left) and periodogram (right) of the fre-
quency distribution of 1980-2002 public operational loss data. (a) “Relation-
ship,” (b) “Human,” (c) “Processes,” (d) “Technology,” and (e) “External.” Pe-
riodograms for “Processes” and “Technology” losses reveal distinct peaks at fre-
quency 0.32 and 0.41, suggesting a period of 1/0.33=3.03 years and 1/0.41=2.41
years, respectively.
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we refer the reader to Chapter 5 §5.2 p.31. The time series of the annually aggre-

gated frequency data for each year spanned by the data is illustrated in Figure

7.1, left column.

Following Algorithm 1 described in §7.2.2, we aggregate loss events on the

annual basis. There is some evidence of a persistent cyclical component present

for the “Processes” and “Technology” type data (see Figure 7.1 right column),

with a period of approximately 3.03 years for the “Processes” type and a period

of 2.41 years for the “Technology” type. Hence, for the two processes it may be

relevant to fit a rate function of a sinusoidal type.4

Visual inspection of the plot suggests that, as a general trend, the accumu-

lation resembles a continuous cdf-like process.5 Including further a cyclical (e.g.,

sinusoidal) component for the “Processes” and “Technology” type data would in-

volve a greater number of parameters that may result in overfitting. We hence

agree to omit the analysis of the cyclicality in the data and focus on the gen-

eral trend.6 As a result, we fit two NHPP models with a deterministic intensity

function to each of the five datasets:

NHPP Type I (Lognormal cdf-like) Λ(t) = a+ b exp
{
− (log t−d)2

2c2

}
(2π)−1/2c−1;

NHPP Type II (Logweibull cdf-like) Λ(t) = a− b exp
{
−c logd t

}
.

Figure 7.2 plots actual annual frequency of loss events with the fitted HPP

and NHPP. Furthermore, Table 7.1 shows the parameter and error estimates for

NHPP of both types fitted to the operational losses and compares the fit to HPP.

4See, for example, [37] for an example of a sinusoidal NHPP fitted to quarterly aggregated
U.S. natural catastrophe frequency data.

5Certainly, on a longer time horizon, this would result in a near-zero instantaneous frequency
rate function. However, in this particular study, such model appears plausible for this dataset
and time frame.

6Nevertheless, the presence of cyclicality in operational loss data is an important finding and
requires further investigation. This remains a topic for our future research.
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Figure 7.2: Frequency distributions of 1980-2002 public operational loss data:
cumulative number of loss events over time. The plots reveal a non-homogeneous
nature of loss occurrence. (a) “Relationship,” (b) “Human,” (c) “Processes,” (d)
“Technology,” and (e) “External.”
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Table 7.1: Parameter estimates, MSE, and MAE corresponding to fitted NHPP
Type I and Type II and HPP processes.

Loss/Process Parameter Estimates MSE MAE

“Relationship”

NHPP Type I a b c d

34.13 1364.82 0.63 3.32 76.57 7.05
NHPP Type II a b c d

930.29 896.17 0.0010 6.82 69.08 6.57
HPP λ

36.91 5907.45 65.68

“Human”

NHPP Type I a b c d

33.49 1436.56 0.65 3.43 68.05 6.89
NHPP Type II a b c d

950.20 917.11 0.0008 6.80 61.59 6.60
HPP λ

35.35 6600.38 65.33

“Processes”

NHPP Type I a b c d

9.44 2098.96 1.04 4.58 22.50 3.64
NHPP Type II a b c d

2034.25 2024.77 0.0007 4.79 23.06 3.65
HPP λ

14.13 1664.82 36.57

“Technology”

NHPP Type I a b c d

0.79 120.20 0.58 3.47 3.71 1.28
NHPP Type II a b c d

137.68 138.39 0.0006 6.32 4.89 1.67
HPP λ

3.35 217.04 13.42

“External”

NHPP Type I a b c d

2.02 305.91 0.53 3.21 16.02 2.71
NHPP Type II a b c d

237.66 235.94 0.00025 8.30 14.55 2.74
HPP λ

10.13 947.32 24.67
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Clearly, NHPP results in a superior fit as is evident from lower error estimates.

In Chapter 6 §6.6.2 we also presented an empirical study with the inter-arrival

times data for the operational losses. It was concluded that the α-Stable and

symmetric α-Stable distributions fitted the data best. We refer the reader to p.

66 for further discussions of this study.
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Chapter 8

Truncated Loss Models

8.1 Introduction

In an ideal scenario, the data collection process results in all operational loss events

being detected and duly recorded. However, the data recording is subject to lower

recording thresholds, so that only data above a certain amount enter databases.

In this sense, the data available for estimation appears to be left-truncated. Left-

truncation of the data must be appropriately addressed in the estimation process,

in order to determine a correct capital charge.

In this chapter, we discuss a methodology for the estimation of the parameters

of the severity and frequency distributions when some operational loss data are

missing from the dataset. We further explore the implications of using a wrong

approach (under which the truncation is ignored) and correct approaches (under

which the truncation is adequately addressed) on the resulting capital charge and

present results of related empirical studies.
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8.2 Reporting Bias Problem

Operational loss data are subject to minimum collection threshold which is a fixed

pre-determined amount: approximately $10,000 for banks’ internal databases and

approximately $1 million for public (or external) databases; see, e.g., [27]. This

creates a so-called reporting bias.

There are several reasons for setting such minimum threshold.

1. Data recording may be costly. When the threshold is decreased linearly, the

costs of recording data increase exponentially. Furthermore, a large number

of small losses may be recorded with mistakes that can result in additional

operational losses.

2. Smaller losses are easier to hide, while it is harder to hide larger losses.

For example, a trader who has committed a trading error may falsify docu-

ment and succeed in making small-magnitude losses go unnoticed by bank

management. However, large amount are much more difficult to hide.

3. Poor operational loss data recording practices in past years may have been

such that smaller losses could be left unrecorded, while larger losses were

properly reported and recorded.

8.3 Truncated Model for Operational Risk

In the presence of missing data, the recorded operational losses follow a truncated

compound Poisson process.1 Correctly specifying the loss and frequency distri-

bution is the key to a correct estimation of the capital charge, given that the

assumptions on the severity and frequency are met.

1Compound models for operational risk are reviewed in Chapter (Cox).
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Figure 8.1: Illustration of incomplete loss and frequency data when the loss data
are left-truncated.
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8.3.1 Data Specification

Let us denote the minimum threshold above which losses are being recorded by

H. The histogram of such observed loss data would represent only the right tail of

a fuller loss distribution rather than the entire distribution. Figure 8.1 illustrates

the idea.

We identify two distinct approaches – misspecified (the one most frequently

used by practitioners) and correctly specified – that one may use:

1. “Naive” Approach. Under the “naive” misspecified approach one would

treat the observed data as complete and fit an unconditional loss distribution

directly to the observed data. The observed frequency is treated as the true

frequency distribution.

2. Conditional Approach. Under the conditional approach one correctly speci-

fies the distribution by noting the fact that the data are recorded only above
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H. The frequency of the observed data is below the true frequency of loss

events, and needs to be rescaled.

The first approach, “naive” approach, is incorrect because it ignores the miss-

ing data in the lower quantiles of the loss distribution, i.e., (0, H), and both the

severity and frequency distributions are misspecified.

The second approach, conditional approach, relies on three assumptions:

Assumption 1 There is no prior information (neither regarding the frequency

nor the severity) on the missing data.

Assumption 2 Missing data and recorded data belong to the same family of dis-

tributions with identical parameters.

Assumption 3 Loss magnitudes are independent from the frequency of loss oc-

currence and can be treated as two independent random processes.

Under the conditional approach, one needs to fit directly the right tail of the

distribution and correctly “scale up” the frequency. This will be treated in §8.3.2.

Figure 8.2 illustrates an exemplary histogram of operational loss data with fitted

“naive” density (part a), conditional density (part b), and the complete correctly

specified density (part c). We will discuss the conditional approach in detail in

the following section.

8.3.2 Parameter Estimation

Throughout this section, we follow the notations as those in [38]. Suppose that

the available data set collected in the time frame [T1, T2] are incomplete due to the

non-negative pre-specified threshold H that defines a partition on <>0 through

the events A1 = (0, H) and A2 = [H,∞). Realizations of the losses in A1 do
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Figure 8.2: Illustration of the “naive” approach and the conditional approach.
Panel (a) portrays the density estimated under the “naive” approach; panel (b)
portrays the conditional density estimated under the conditional approach; panel
(c) portrays the unconditional complete-data density estimated under the condi-
tional approach.
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 H  0 
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x 
 H  0 
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f(x) 

x 

 
 H  0 

(c) Complete pdf

not enter the data sample, with neither the frequency nor the severity being

recorded. Realizations in A2 are fully reported, with both the frequency and the

loss amounts being specified. Hence, observations in A1 constitute the missing

data, and those in A2 the observed left-truncated data. The observed sample is

of the form z = (n,x), where n is the number of observations in A2 and x is the

corresponding observed sample x = {x1, x2, . . . , xn} in A2. Given that the total

83



number of observations in the complete sample is unknown, joint density of z can

be expressed as:

g
λ,γ(z) =

(4t λ̃)n

n!
e−4t λ̃ ·

n∏
j=1

fγ(xj)

qγ,2

, (8.1)

where qγ,j denotes the probability for a random realization to fall into set Aj, j =

1, 2, λ̃ is the observed intensity2 related to the complete-data intensity λ by λ̃ :=

qγ,2 ·λ, and 4t := T2−T1 is the length of the sample window. In the representation

(8.1), the Poisson process Ñt with intensity λ̃ that counts only the observed losses

exceeding H can be thus interpreted as a thinning of the original process Nt with

intensity λ that counts all events in the complete data sample. Due to Assumption

3 of §8.3.1, the maximization of the corresponding log-likelihood function with

respect to λ and γ can be divided into two separate maximization problems, each

depending on only one parameter:

γ̂MLE = arg max
γ

log g
λ,γ(z) = arg max

γ
log

(
n∏

j=1

fγ(xj)

qγ,2

)
. (8.2)

Given that the Ñt ∼ Poisson(λ̃), using the law of conditional probabilities the

complete-data intensity rate can be then obtained by:

λ̂MLE = arg max
λ

log g
λ,γ̂MLE

(z) =
n

4t · qγ̂MLE,2

. (8.3)

Assumptions 1, 2, and 3 presented in §8.3.1 guarantee that the models in

Equations (8.2) and (8.3) produce correct estimates for the complete loss and

frequency distributions.

The MLE estimation of γ can be done in two ways: performing direct numerical

2In case of a NHPP, λ4t of a HPP is replaced with Λ(t) =
∫ t

0
λ(s)ds.
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maximization of the Constrained Likelihood Function and using the Expectation-

Maximization algorithm.

Constrained Maximum Likelihood Function Approach

In Constrained Maximum Likelihood Function approach, one can obtain the pa-

rameters of the loss distribution by directly maximizing the likelihood function,

as described in Equation (8.2). The frequency parameter can be then obtained

using Equation (8.3).

Expectation-Maximization Algorithm Approach

This Expectation-Maximization (EM) Algorithm approach, is aimed at estimating

the unknown parameters by maximizing the expected likelihood function using

available information on the observed and missing data; see, e.g., [51].

The EM algorithm is a two-step iterative procedure. In the initial step, given

an initial guess value γ(0) for the unknown parameter set γ, the missing data val-

ues in the log-likelihood function are replaced by their expected values. This leads

to the guess value for the expected complete log-likelihood function (Expectation

step) which is further maximized with respect to the parameter values (Maximiza-

tion step). The solution is then used as the initial guess in the next iteration of

the algorithm, and the Expectation step and the Maximization step are repeated,

and so on. For the purpose of clarity, we simplify our earlier notations. The EM

algorithm can be thus summarized as follows:

• Initial step: choose initial (prior) values γ(0). These can be used to estimate

the initial guess value m(0) representing the number of missing data.

• Expectation step (E-step): Given γ(0), calculate the expected log-likelihood
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function of complete data. Mathematically, for the left-truncation point H,

Eγ(0)

[
logLγ(xcomplete) | xobserved ≥ H

]
=

m(0)Eγ(0)

[
log fγ(xmissing)

]
+

n∑
j=1

log fγ

(
xobserved). (8.4)

• Maximization step (M-step): find the (posterior) parameter set γ which

maximizes the expected log-likelihood function from the previous step and

set it equal to the guess value in the next step γ(1). Mathematically,

γ(1) := arg max
γ

Eγ(0)

[
logLγ(xcomplete) | xobserved ≥ H

]
. (8.5)

• Iteration: repeat E-step and M-step – the sequence {γk}k>0 will converge to

the desired Maximum Likelihood estimates γ̂MLE of the distribution describ-

ing the complete data sample.

Using the expressions for MLE estimates and rearranging terms, it can be

easily shown that for X ∼ LN(µ, σ) the(k + 1)th step yields the new estimates:

µ̂
(k+1)
MLE = (1− Fγ̂MLE

(H)(k)) 1
n

n∑
j=1

log(xj) +
H∫
0

log(x)fγ̂(k)(x)dx

σ̂2
(k+1)

MLE = (1− Fγ̂MLE
(H)(k)) 1

n

n∑
j=1

log2(xj) +
H∫
0

log2(x)fγ̂(k)(x)dx− µ̂2
(k+1)

MLE .

(8.6)

Table 8.1 illustrates the convergence results with the EM algorithm for a simple

problem with five observed values ỹ = {20, 23, 25, 30, 50} and a threshold level

H = 15. As the start values for the algorithm we chose the MLE estimates of

the unconditional Lognormal density, µ̂ = 3.3327 and σ̂2 = 0.1011. This yields

86



Table 8.1: Iteration results of EM-algorithm for an example with Lognormally
distributed sample {20, 23, 25, 30, 50}. Convergence was achieved after 55 itera-
tions.

iteration step k µ(k) σ2(k) logL
(k)
obs

0 3.3327 0.1011 -18.0299
1 3.332665 0.1011401 -17.58342
2 3.314242 0.1129907 -17.40839
3 3.305652 0.1182587 -17.33105
4 3.301268 0.1209048 -17.29199
5 3.29894 0.1223007 -17.27129
6 3.29768 0.1230544 -17.26009
7 3.29699 0.1234662 -17.25396
8 3.29661 0.1236928 -17.25059
9 3.2964 0.1238178 -17.24873
10 3.296284 0.1238869 -17.24770
11 3.29622 0.1239251 -17.24713
12 3.296185 0.1239463 -17.24681
13 3.296165 0.123958 -17.24664
14 3.296154 0.1239645 -17.24654
15 3.296148 0.1239681 -17.24649
16 3.296145 0.1239701 -17.24646
17 3.296143 0.1239712 -17.24644
18 3.296142 0.1239719 -17.24643
19 3.296141 0.1239722 -17.24643
20 3.296141 0.1239724 -17.24642
21 3.296141 0.1239725 -17.24642
22 3.296141 0.1239725 -17.24642
23 3.29614 0.1239726 -17.24642
...

...
...

...
55 3.29614 0.1239726 -17.24642

log-likelihood value of −18.0299. The algorithm iterates until

δ = max
k
{µ(k) − µ(k−1), σ2(k) − σ2(k−1)} < 0.1 · 10−15, (8.7)

i.e., until the MLE estimates converge (the value was chosen arbitrarily). The
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posterior MLE estimates appear in the bottom row of the table. The last column

shows the log-likelihood values for the observed portion of the data.

Remark 1 The convergence of the EM-algorithm to the posterior MLE estimates

is achieved regardless of the choice of the initial (prior) guess values.

Remark 2 Because in every round of the EM-algorithm the unknown parameters

are replaced with the values that are closer to the true values, at every round

the value of the likelihood function increases relative to the previous round. (See

Figure for the example with Lognormal distribution.)

The estimated parameters of the severity distribution can be then used in

qγ̂MLE,2 to rescale the intensity rate function in the frequency distribution.

Consequences of Missing Data: Lognormal Example

Many empirical studies found in operational risk literature ignore the missing data

and use the “naive” approach. What are the implications of using the “naive”

approach on the operational capital charge? We illustrate the implications using

a simple example with Lognormally distributed losses.

Our first question is the impact of using the wrong approach on the parameter

estimates. Suppose we estimate the parameters of Lognormal distribution to be

µ̂ and σ̂ and the observed intensity rate of the Poisson process is λ̂3 under the

“naive” approach, while the correct parameters (for the complete data) are µ,

σ, and λ, respectively. Then, simple calculations will produce the following bias

estimates (i.e., the difference between the estimated parameter value and the true

3For a non-homogeneous intensity rate λ(t) the procedure remains the same.
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value):

bias(µ̂) = σ · ϕ( log H−µ
σ )

1−Φ( log H−µ
σ )

> 0

bias(σ̂2)=σ2

(
log H−µ

σ
· ϕ(log H−µ

σ )
1−Φ(log H−µ

σ )
−
(

ϕ(log H−µ
σ )

1−Φ( log H−µ
σ )

)2
)

< 0 since logH is small

bias(λ̂) = −λ · Φ
(

log H−µ
σ

)
< 0,

(8.8)

where ϕ(·) and Φ(·) are the density and distribution function of N(0, 1) distribu-

tion. Clearly, the location parameter µ̂ is overestimated, and the scale parameter

σ̂ and the intensity rate λ̂ are underestimated under the “naive” approach.

Our second question is the impact of using the wrong approach on the estimates

of the expected aggregate operational loss (EL), Value-at-Risk (VaR), and the

Conditional Value-at-Risk (CVaR).4

First, we can note that distributions that appear relevant to modeling opera-

tional losses belong to the class of sub-exponential distributions. This allows us

to use the following approximation:

P (S4t > M) ∼ EN4t × P (X > M), as M →∞. (8.9)

Second, substituting M in Equation (8.9) with VaR (see Chapter 5 §5.5) for

a given confidence level (1− α) and rearranging, we obtain

VaR4t,1−α ∼ F−1

(
1− α

EN4t

)
. (8.10)

4The bias estimates for EL, VaR, and CVaR cannot be expressed in a simple closed form.
For details see [38] and [39].
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Table 8.2: Fraction of missing data for the Lognormal example.

Fraction of missing data Fγ0(H) for the Lognormal example

with true parameters µ0, σ0 and nominal threshold H = 50.

µ0 = 4 µ0 = 5 µ0 = 6.5
σ0 = 1.5 0.48 0.23 0.04
σ0 = 2 0.48 0.29 0.10
σ0 = 2.7 0.49 0.34 0.17

If losses are Lognormally distributed, Equation (8.10) reduces to:

V̂aR4t,1−α = exp(µ̂+ bias(µ̂) + (σ̂ + bias(σ̂))Φ−1(1− α

(λ̂+bias(λ̂))4t
)). (8.11)

Unfortunately, closed-form concise expression for the bias of the VaR estimate

cannot be obtained. No simplified expression for CVaR can be determined.

8.4 Simulation Study: Lognormal Example

A simple example can portray how the magnitude of the bias of the estimated

parameters increases with an increased fraction of missing data. For an exemplary

minimum recording threshold of H = 50, and the true parameters µ0 and σ0, Table

8.2 reveals the corresponding fractions of missing data Fγ0(H).

8.4.1 Impact on Parameter Estimates

Figures 8.3 and 8.4 show results of a simulation study of the effects of the biases

by illustrating the ratios of the parameters estimated under the “naive” approach

to the true parameter values, µ0, σ0, and λ0. The distance between the ratio and

unity represents the relative bias for each case. The ratio being equal to unity

90



Figure 8.3: Illustration of the bias in the parameters µ̂ and σ̂ and the fractions
of missing data Fγ̂(H) (denotes by Q), estimated under the “naive” (left) and
conditional (right) approaches, under the assumption of Lognormally distributed
losses and Poisson frequency, for a range of true values µ0 and σ0 and H = 50.
The figures show the ratio of the estimated parameters to the true parameters
of the loss distribution. Bias under the “naive” approach is evident from the
discrepancy of the ratios from unity.
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Figure 8.4: Illustration of bias of λ̂ estimated under the “naive” and conditional
approaches for varying fractions of missing data (Fγ0(H)).
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indicates the absence of any bias. Clearly, the bias estimate increases with an

increased fraction of missing data. The conditional approach (figures are omitted

here) resulted in correct parameter estimates yielding the ratios (at least approx-

imately) equal to one.

8.4.2 Impact on Expected Aggregate Loss, VaR, and CVaR

Using the same example as in §8.4.1, and assuming λ = 100 and α = 0.05,

we perform simulations to determine the impact on missing data on various risk

estimates. Figure 8.5 demonstrates the ratios of EL, VaR, and CVaR estimated

to the true corresponding measures. EL was obtained using EL = EN4tEX, VaR

was estimated using the asymptotic approximation presented in Equation (8.11),

and CVaR was estimated using the Monte Carlo technique. Conditional approach

resulted in correct estimates for the three measures yielding the ratios equal to

one (with some oscillations around unity due to simulation errors). It is clear that

if “naive” approach is used to calculate the risk measures, they would be severely
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Figure 8.5: Illustration of the bias in the estimates of one-year EL, 95% VaR, and
95% CVaR under the “naive” (left) and conditional (right) approaches, under
the assumption of Lognormal distribution for losses and Poisson frequency, for a
range of values for µ and σ, H = 50, and λ = 100. The figures show the ratio of
the estimated risk measures to the true risk measures. Bias is evident from the
discrepancy of the ratios from unity.
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underestimated.5 Serious consequences of using the wrong approach would be a

mismatch between the true exposure to operational risk and the estimated capital

charge: amount of funds set aside by a financial institution may be insufficient to

cover operational losses.

Remark 3 If the conditional approach is used to estimate the parameters of the

loss and frequency distribution, then the capital charge must be invariant to the

choice of the initial threshold level.

This remark is supported by our simulation studies referring to the conditional

case. It is worth mentioning that, of course, the invariance property relies on the

assumption that the true distribution of loss severity and frequency is correctly

identified.

8.5 Empirical Study with Operational Loss Data

8.5.1 Overview of Earlier Studies

The majority of empirical studies with operational loss data use the “naive” ap-

proach to estimate the unknown parameters of the loss and frequency distribu-

tions, under which the missing data problem is overlooked and not adequately

addressed. A common misconception is that using the “naive” approach can

severely overestimate the capital charge. See, for example, a brief discussion of

this conjecture in [49]. As another example, [127] points out the minimum collec-

tion threshold of approximately Euro 10,000, but nevertheless states that it is not

necessary to focus on the correct modeling of low and medium magnitude losses

since it is the upper quantiles that determine the capital charge; hence, according

5For more details on this theoretical study see [38,39] and [128].
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to him, the truncation in the data can be ignored, and he fits unconditional loss

distributions to the data. [114] examine publicly reported unauthorized trading op-

erational loss data obtained from the OpVar database (marketed by OpVantage)

for the 1980-2001 period. They defined “material” unauthorized trading losses

as those events resulting in direct financial losses greater than $ 100,000. They

explain the necessity for the threshold by poor data reporting practices prior to

1990. [114] use truncated loss distribution to model the severity and the observed

frequency distribution to model the frequency of the losses. By doing so, they

leave small and medium-magnitude losses out of the estimation process, basically

assuming that only larger-magnitude losses contribute to the loss process. [13] ex-

plore truncated operational loss data. In particular, they discuss the importance

of this issue when data coming from various institutions is pooled together in pub-

lic databases. They use truncated loss distributions but perform no adjustments

to the frequency. They final results hence indicate that the “naive” estimation

procedure overestimates the capital charge. One can draw an important conclu-

sion from this last empirical study: the contribution of the frequency distribution

to the operational capital charge is very significant: when the frequency distribu-

tion is correctly specified (see our earlier theoretical discussions), then (at least

for the Lognormal example) “naive” approach tends to underestimate the capital

charge.

8.5.2 Empirical Study with 1980-2002 Public Operational

Loss Data

In [38], we discussed theoretical implications of using the “naive” approach for

the operational risk modeling. In our later [39] empirical paper, we applied the

methodology to 1980-2002 operational loss data from a public database. We
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remind that the data consist of five loss types: “Relationship”, “Human”, “Pro-

cesses”, “Technology”, and “External”. The focus of this empirical study was to

compare the results obtained under the “naive” and conditional methodologies.

Parameter Estimation

We only consider the Type I intensity rate of the frequency distribution; see

Chapter 7 in which the description of such NHPP was described. In the conditional

approach, we rescale the intensity rate using the procedure described earlier.

We restrict our attention to the loss distributions that lie on the positive real

half-line.6 The following loss distributions are considered in the study:

Exponential Exp(λ) fX(x) = λe−λx

x ≥ 0, λ > 0

Lognormal LN (µ, σ) fX(x) = 1√
2πσx

exp
{
− (log x−µ)2

2σ2

}
x ≥ 0, µ, σ > 0

Gamma Gam(α, β) fX(x) = βαxα−1

Γ(α)
exp {−βx}

x ≥ 0, α, β > 0

Weibull Weib(β, α) fX(x) = αβxα−1 exp {−βxα}

x ≥ 0, β, α > 0

Logweibull logWeib(β, α) fX(x) = 1
x
αβ(log x)α−1 exp {−β(log x)α}

x ≥ 0, β, α > 0

Generalized GPD(ξ, β) fX(x) = β−1(1 + ξxβ−1)−(1+ 1
ξ
)

Pareto x ≥ 0, β > 0

6The exception is the symmetric αStable distribution, for which we symmetrized the data:
x∗ = [x;−x].
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Burr Burr(α, β, τ) fX(x) = ταβαxτ−1(β + xτ )−(α+1)

x ≥ 0, α, β, τ > 0

log-αStable logSα(β, σ, µ) fX(x) = g(log x)
x

, g ∈ Sα(β, σ, µ),

no closed form

x > 0, α ∈ (0, 2), β ∈ [−1, 1], σ, µ > 0

Symmetric αStable SαS(σ) fX(x) ∈ Sα(0, σ, 0), no closed form

x = |y|, α ∈ (0, 2), σ > 0

Tables 8.3, 8.8, 8.9, 8.10, and 8.11 demonstrate the results of the empirical

study (the last four tables are presented in the appendix to this chapter). For

every distribution considered, quantities of interest were estimated using the mis-

specified “naive” approach (first row) and correctly specified conditional approach

(second row). The quantities of interest are: (1) MLE parameter estimates, (2)

fraction of missing data under the estimated parameters, and (3) estimate of

log-likelihood function. The unknown parameters were estimated using the Con-

strained MLE approach. For the conditional approach, the frequency rate was

adjusted using the methodology described in §8.3.2. It is evident that a con-

siderable fraction of data appears to be missing (as represented by F (H) under

the conditional approach); also, comparison with the corresponding fraction un-

der the “naive” approach indicates that low- and medium-magnitude losses are

given a higher weight under the conditional approach. The log-likelihood function

is higher under the conditional approach, indicating a better fit of the distribu-

tions to the data. Because the Gamma distribution results in near-one fraction of

missing data, we exclude it from further analysis.
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Table 8.3: Parameter estimates, F (H), and log-likelihood values for the “naive”
and conditional approaches for the “Relationship” type losses.

γ̂,Fγ̂(H),logL “Naive” Conditional
Exp λ̂ 9.6756·10−9 9.7701·10−9

Fγ̂(H) 0.0096 0.0097
logL -4532.7 -4530.5

LN µ̂ 16.5789 15.7125
σ̂ 1.7872 2.3639

Fγ̂(H) 0.0610 0.2111
logL -4328.8 -4304.4

Gam α̂ 0.3574 1.5392·10−6

β̂ 3.4585·10−9 1.6571·10−9

Fγ̂(H) 0.1480 ≈ 1
logL -4166.7 -4129.4

Weib β̂ 1.1613·10−4 0.0108
α̂ 0.5175 0.2933

Fγ̂(H) 0.1375 0.4629
logL -4361.4 -4303.6

logWeib β̂ 3.1933·10−12 2.8169·10−8

α̂ 9.2660 6.2307
Fγ̂(H) 0.1111 0.3016
logL -15875.8 -15750.2

GPD ξ̂ 1.2481 1.5352
β̂ 1.2588·107 0.7060·107

Fγ̂(H) 0.0730 0.1203
logL -4333.0 -4310.9

Burr α̂ 0.0987 0.1284
β̂ 2.5098·1026 3.2497·1020

τ̂ 4.2672 3.3263
Fγ̂(H) 0.0145 0.0311
logL -4327.1 -4329.6

logSα α̂ 1.8545 1.3313
β̂ 1 -1
σ̂ 1.1975 2.7031
µ̂ 16.6536 10.1928

Fγ̂(H) 0.0331 0.9226
logL -15812.8 -15752.5

SαS α̂ 0.6820 0.5905
σ̂ 1.1395·107 0.7073·107

Fγ̂(H) 0.0715 0.1283
logL -20807.0 -7800.2
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In-Sample Goodness-of-Fit Tests

In this section, we would like to determine which of the considered loss distribu-

tions fits the data sample best, based on the in-sample goodness-of-fit tests. We

point out that the “naive” approach produced high test statistic values and near-

zero p-values for most distributions indicating the inadequacy of the methodology

(the figures are omitted for the purpose of saving space). Therefore, we restrict

ourselves only to the conditional approach. We test a composite hypothesis that

the truncated sample belongs to a hypothesized truncated distribution. For an

iid sample drawn from continuous cdf F , for a family of continuous distributions

F , the null and alternative hypotheses are summarized as:

H0 : F (x) ∈ F(x) HA : F (x) /∈ F(x). (8.12)

For example, to test whether the sample is drawn from a Lognormal distribution,

we formulate the null hypothesis as H0 : F (x) ∈ F(x) = {LN µ,σ(x) : µ ∈ <, σ >

0}.

We consider five statistics for the measure of the distance between the empirical

and hypothesized cdf: Kolmogorov-Smirnov (KS), Kuiper (V ), supremum and

quadratic Anderson-Darling (AD and AD2), and Cramér-von Mises (W 2).

KS = max
{
KS+, KS−

}
, (8.13)

V = KS+ +KS−, (8.14)

AD =
√
n sup

x

∣∣∣∣∣∣ Fn(x)− F̂ (x)√
F̂ (x)

(
1− F̂ (x)

)
∣∣∣∣∣∣ , (8.15)

AD2 = n

∫ ∞

−∞

(Fn(x)− F̂ (x))2

F̂ (x)(1− F̂ (x))
dF̂ (x), (8.16)
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Table 8.4: Goodness-of-fit test statistics and corresponding p-values (in square
brackets) for the conditional loss distributions fitted to “Relationship” loss data.

KS V AD AD2 W 2

Exp 11.0868 11.9973 1.3·107 344.37 50.5365
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.8056 1.3341 2.6094 0.7554 0.1012
[0.082] [0.138] [0.347] [0.043] [0.086]

Weib 0.5553 1.0821 3.8703 0.7073 0.0716
[0.625] [0.514] [0.138] [0.072] [0.249]

logWeib 0.5284 1.0061 3.0718 0.4682 0.0479
[0.699] [0.628] [0.255] [0.289] [0.514]

GPD 1.4797 2.6084 3.5954 3.7165 0.5209
[<0.005] [<0.005] [0.154] [<0.005] [<0.005]

Burr 1.3673 2.4165 3.3069 3.1371 0.4310
[0.032] [<0.005] [0.309] [<0.005] [0.011]

logSα 1.5929 1.6930 3.8184 3.8067 0.7076
[0.295] [0.295] [0.275] [0.290] [0.292]

SαS 1.1634 2.0695 1.4·105 4.4723 0.3630
[0.034] [<0.005] [>0.995] [0.992] [<0.005]

W 2 = n

∫ ∞

−∞
(Fn(x)− F̂ (x))2dF̂ (x), (8.17)

where KS+ =
√
n supx{Fn(x) − F̂ (x)} and KS− =

√
n supx{F̂ (x) − Fn(x)}.

Scaling factors
√
n and n were used for the supremum class and the quadratic

class statistics, respectively, to make them comparable across samples of different

size. The limiting distributions of the test statistics are not parameter-free, so

the p-values and the critical values were obtained with Monte Carlo simulations,

as described in [144]. p-values suggest how likely it is that the data comes from a

considered class of distributions; they were obtained following the four steps: (a)

generate 1,000 samples from fitted distribution, of the same size as the original

sample, (b) fit the distribution to each sample, (c) estimate the statistic value

for each sample, and (d) find the proportion of time the statistic values from the
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simulated samples exceed the original statistic value.

The goodness-of-fit test statistics and the corresponding p-values for the con-

ditional approach are presented in Tables 8.4, 8.12, 8.13, 8.14, and 8.15 (the last

four tables are given in the appendix to this chapter). Weibull and Logweibull

show the best overall fit around the center of the data, based on the KS and V

tests, and more heavy-tailed distributions such as Burr, Pareto, and symmetric

αStable, suggest the best fit around the tails. In general, the figures suggest that

none of the data provides with the best overall fit: the data is best described by

distributions with a moderate tail around the center and by those with a very

heavy-tail around the upper tail. The Exponential distribution produces a very

poor fit; we therefore exclude this distribution from future analysis.

One-Year Ahead EL, VaR, and CVaR Forecasts

To estimate EL, VaR, and CVaR, we undertake a forward-looking approach and

use the functional form of the frequency and the parameters of the remaining

severity distribution, obtained from the historical data over the available 23 year

period, to forecast EL, VaR, and CVaR one year ahead. Tables 8.5, 8.16, 8.17,

8.18, and 8.19 present the estimates of EL, 95% and 99% VaR, and 95% and 99%

CVaR. EL was calculated as EL = EN4tEX, and VaR and CVaR were estimated

via 50,000 Monte Carlo samples. Clearly, ignoring the missing data results in

(often highly significant) underestimation of the expected aggregate loss, VaR,

and CVaR, whenever the wrong approach is used, in some instances up to five

times.7

7The estimates of EL and CVaR were infinite (denoted by “-” in the table) whenever the
first moment of the loss distribution was infinite. One way to fix this problem would be to
fit doubly-truncated loss distribution to the data, by defining the upper bound U for the loss
amount. In this case, the conditional distribution must be specified as:
fγ(x | H < x < U) = fγ(x ; H<x<U)

Fγ(U)−Fγ(H) Ix<U ,

that results in the maximum likelihood parameters γ̂MLE. Then, the unconditional distribution
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Table 8.5: Estimates of one-year ahead EL, VaR, and CVaR (×1010) for the
“naive” and conditional approaches for “Relationship” type losses.

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

LN
“Naive” 0.1105 0.2832 0.5386 0.4662 0.8685

Conditional 0.1634 0.4662 1.0644 0.9016 1.9091
Weib

“Naive” 0.1065 0.2203 0.2996 0.2700 0.3505
Conditional 0.1284 0.3187 0.5121 0.4430 0.6689

logWeib

“Naive” - 0.2235 0.3193 - -
Conditional - 0.3332 0.5902 - -

GPD
“Naive” - 0.8240 4.1537 - -

Conditional - 1.5756 11.3028 - -
Burr

“Naive” - 2.8595 31.5637 - -
Conditional - 1.5713 11.5519 - -

logSα

“Naive” - 1.9124 7488.08 - -
Conditional - 0.4359 0.9557 - -

SαS
“Naive” - 2.1873 17.3578 - -

Conditional - 4.5476 56.2927 - -

Backtesting

In this section, we conduct an out-of-sample backtesting of the models. We split

our data sample into two parts: (1) the first sample consists of all data points

in 1980-1995 and will be used for calibration, and (2) the second sample consists

of the remaining data in 1996-2002. We use the first sample and the obtained

becomes:
fγ̂MLE

(x | x < U) =
fγ̂MLE

(x ;x<U)

Fγ̂MLE
(U) Ix<U .

The scaling factor for the frequency distribution becomes (Fγ̂MLE
(U) − Fγ̂MLE

(H))−1. One
possibility for U would be determining the worst potential loss or, alternatively, the total value
of assets. See also [142], footnote 15, for a brief discussion of a similar issue: they suggest
Winsorizing loss data at the point equal to 1,000 standard deviations.
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truncated loss distributions’ parameter estimates to analyze our models’ predict-

ing power regarding the data belonging to the second sample. We assume that

our model has a one-step ahead predicting power, with one step equal to one year

(due to a scarcity of data, it would be unreasonable to use smaller intervals). In

the primary step we use the data from 1980 until 1995 to conduct the forecasting

about 1996 losses.

First, we estimate the unknown parameters of truncated distributions. Next,

to obtain the distribution of the annually aggregated losses we repeat the following

a large number (10,000) of times: use the estimated parameters to simulate N

losses exceeding the $1 million threshold, where N is the random number of losses

in the year that we perform forecasting on as dictated by the fitted frequency

function, and aggregate them. At each forecasting step (seven steps total) we

shift the window by one year forward and repeat the above procedure. In this

way we test the model for both the severity and frequency distributions. We have

observed that both Type I and II models fit the data very well; in this section we

only focus on the Type I model. Since the observed data is incomplete, we are

only able to compare the forecasting power regarding the truncated (rather than

complete) data.

The analysis was carried out in two parts. In part one, we compared sev-

eral quantiles (25, 50, 75, 95, 99, and 99.9) of the forecasted aggregated loss

distribution with the corresponding bootstrapped (non-parametric) quantiles of

the realized loss distribution.8 Table 8.6 presents the MSE and MAE error es-

timates for the forecasted quantiles relative to the corresponding bootstrapped

quantiles (left) and relative to the realized total loss (middle), and the errors of

the simulated relative to the actual aggregate loss (right), for the “Relationship”

type losses. (Corresponding tables 8.20, 8.21, 8.22, and 8.23 are given in the ap-

8The use of bootstrapping and Monte Carlo was suggested by the Basel Committee [26,28].
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pendix.) Figures were obtained based on 50,000 Monte Carlo samples. Errors

around the 25th and 75th quantiles show the errors around the central bulk of the

data, 50th quantile corresponds to the median, and the errors around the highest

quantiles (95, 99, and 99.9) are the errors at the far right end of the distribution.

Clearly the Weibull model provides the lowest estimates for the errors, followed

by the Logweibull and log-αStable models.

In the second part of the analysis, we tested the severity distribution models

(without checking for the frequency) via the Likelihood Ratio (LR) test suggested

in [17]. While non-parametric tests like the Kolmogorov-Smirnov, Kuiper, or

Cramér-von Mises are rather data-intensive [44], the LR test is especially useful

for small data samples. It is based on the following methodology. Assume that

we are interested in a stochastic process xt, t > 0, which is being forecasted at

time t − 1. Let further the probability density of xt be f(xt) and the associated

distribution function be F (xt) =
∫ xt

−∞ f(u)du. To conduct the test, we estimate the

parameters of the loss distribution F̂ from the historical data in the calibration

period. If F̂ is the correct loss distribution, then based on the so-called [143]

transformation:

yt =

xt∫
−∞

f̂(u)du = F̂ (xt). (8.18)

yt are iid and distributed U [0, 1]. Further, an iid series zt, such that zt ∼

N(0, 1), can be generated from the original data xt with:

zt = Φ−1(yt) = Φ−1
( xt∫
−∞

f̂(u)du
)
. (8.19)

If F̂ is correctly specified, zt will be iid N(0, 1). To test whether the obtained
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Table 8.6: Average forecast errors for “Relationship” type aggregated losses. Left:
errors between corresponding quantiles; middle: errors of forecasted quantiles
relative to realized loss; right: overall error between forecasted and realized loss.

Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0038 0.0485 0.0302 0.1310
50 0.0127 0.0823 0.0155 0.0891
75 0.0260 0.1219 0.0155 0.1115
95 0.1342 0.3467 0.2140 0.4442
99 0.8866 0.8618 1.4125 1.1760

99.9 13.6999 3.6286 16.8095 4.0731

0.1357 0.1812

Weib

25 0.0018 0.0390 0.0017 0.0367
50 0.0026 0.0446 0.0025 0.0439
75 0.0039 0.0509 0.0055 0.0556
95 0.0083 0.0729 0.0170 0.1181
99 0.0151 0.1069 0.0340 0.1733

99.9 0.0288 0.1583 0.0667 0.2498

0.0052 0.0552

logWeib

25 0.0036 0.0462 0.0295 0.1297
50 0.0131 0.0822 0.0161 0.0890
75 0.0278 0.1140 0.0120 0.0977
95 0.0800 0.2312 0.0766 0.2559
99 0.2002 0.4232 0.3186 0.5532

99.9 1.0261 0.9527 1.6881 1.2759

0.0397 0.1402

GPD

25 0.0034 0.0466 0.0272 0.1212
50 0.0105 0.0807 0.0120 0.0828
75 0.0892 0.2429 0.1195 0.3047
95 8.5160 2.7851 9.7921 2.9941
99 475.35 21.3313 490.17 21.6451

99.9 1.8·105 404.99 1.8·105 405.43

3.1·105 6.9486

Burr

25 0.0031 0.0389 0.0240 0.1116
50 0.0142 0.1049 0.0146 0.1069
75 0.2266 0.4093 0.2875 0.4809
95 32.1950 5.2165 34.6466 5.4256
99 2885.1 48.2596 2917.4 48.5730

99.9 2.5·106 1275.7 2.5·106 1276.1

7.9·105 13.1930

logSα

25 0.0038 0.0488 0.0300 0.1308
50 0.0129 0.0834 0.0158 0.0902
75 0.0270 0.1208 0.0155 0.1104
95 0.1266 0.3286 0.1893 0.4083
99 0.7405 0.7785 1.2092 1.0679

99.9 8.3578 2.7464 10.7800 3.1893

0.1357 0.1746

SαS

25 0.0051 0.0471 0.0167 0.0969
50 0.0483 0.1636 0.0463 0.1542
75 0.7872 0.8014 0.9111 0.8727
95 115.14 10.1901 120.01 10.3991
99 1.3·104 106.08 1.3·104 106.40

99.9 2.6·107 4229.7 2.6·107 4230.2

1.6·109 277.43
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Table 8.7: Averaged p-values for “Relationship” type aggregated losses in the
7-year forecast period.

LN Weib logWeib GPD Burr logSα SαS

Ave. p-value 0.4965 0.5922 0.5585 0.4217 0.4239 0.4130 0.4830

series zt is independent across observations and standard Normal, we follow [17].

The used test statistic is LR = −2(l0 − l1) where l0 and l1 are, respectively,

the log-likelihood estimates under the null parameters (µ = 0 and σ = 1) and

under the parameters µzt and σzt estimated via MLE. The p-values are obtained

by referring to the χ2 distribution table and using 2 degrees of freedom. This

LR test has a number of desirable statistical properties and can be considered a

powerful test even for small sample sizes [17]. Thus, we consider this methodology

as an adequate method to investigate whether the realized losses have come from

a particular estimated distribution.

Table 8.7 presents the results for the “Relationship” losses. (Tables 8.24,

8.25, 8.26, and 8.27 for the other four loss types are presented in the Appendix.)

The log-αStable, Burr, and Pareto distributions show the lowest 7-year average

p-values, and the Logweibull and Weibull distributions gave the highest. The

results are roughly consistent with those in Table 8.6. Overall we conclude that

Logweibull and Weibull seem to be most appropriate for forecasting considered

“Relationship” losses. Comparable results were obtained for the remaining four

loss types.

Certainly, the true fraction of missing data and, hence, the correct amount

of the capital charge, are dependent to the loss distribution that is selected for

modeling the losses. Therefore, in-sample and out-of-sample goodness-of-fit tests

become essential for this purpose.
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Not surprisingly, goodness-of-fit tests for this study resulted in near-zero p-

values for most of the goodness-of-fit statistics whenever the “naive” approach

was used (results are omitted here), and in high p-values whenever the conditional

approach was used. Again, this supports the idea that the “naive” approach is

misspecified for the data in hand.
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8.6 Appendix: Results of Empirical Study

Table 8.8: Parameter estimates, F (H), and log-likelihood values for the “naive”
and conditional approaches for the “Human” type losses.

γ̂,Fγ̂(H),logL “Naive” Conditional
Exp λ̂ 7.2216·10−9 7.2741·10−9

Fγ̂(H) 0.0072 0.0073
logL -16053.7 -16047.8

LN µ̂ 16.5878 15.4627
σ̂ 1.8590 2.5642

Fγ̂(H) 0.0679 0.2603
logL -15143.6 -15045.3

Gam α̂ 0.3167 6.9763·10−8

β̂ 2.2869·10−9 1.1679·10−9

Fγ̂(H) 0.1628 ≈ 1
logL -14626.2 -14481.8

Weib β̂ 0.0002 0.0240
α̂ 0.4841 0.2526

Fγ̂(H) 0.1501 0.5441
logL -15274.3 -15044.9

logWeib β̂ 14.3254·10−12 30.7344·10−8

α̂ 9.8946 7.0197
Fγ̂(H) 0.1221 0.3718
logL -15217.8 -15044.6

GPD ξ̂ 1.3761 1.6562
β̂ 1.1441·107 0.6135·107

Fγ̂(H) 0.0792 0.1344
logL -15145.2 -15060.6

Burr α̂ 0.0938 0.0922
β̂ 5.1819·1027 2.8463·1027

τ̂ 4.4823 4.4717
Fγ̂(H) 0.0131 0.0195
logL -15108.7 -15112.0

logSα α̂ 1.6294 1.4042
β̂ 1 -1
σ̂ 1.1395 2.8957
µ̂ 16.8464 10.5108

Fγ̂(H) 0.0083 0.8793
logL -15219.0 -15417.0

SαS α̂ 0.6724 0.6061
σ̂ 1.1126·107 0.7143·107

Fγ̂(H) 0.0742 0.1241
logL -72453.5 -27583.3
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Table 8.9: Parameter estimates, F (H), and log-likelihood values for the “naive”
and conditional approaches for the “Processes” type losses.

γ̂,Fγ̂(H),logL “Naive” Conditional
Exp λ̂ 3.5020·10−9 3.5143·10−9

Fγ̂(H) 0.0035 0.0035
logL -6652.7 -6651.6

LN µ̂ 17.5163 17.1600
σ̂ 2.0215 2.3249

Fγ̂(H) 0.0336 0.0751
logL -6382.7 -6366.9

Gam α̂ 0.3450 0.0247
β̂ 1.2082·10−9 0.5480·10−9

Fγ̂(H) 0.1104 ≈ 1
logL -6126.5 -6088.5

Weib β̂ 0.0001 0.0021
α̂ 0.4938 0.3515

Fγ̂(H) 0.0923 0.2338
logL -6412.1 -6364.9

logWeib β̂ 2.4894·10−12 0.1091·10−8

α̂ 9.1693 7.1614
Fγ̂(H) 0.0687 0.1479
logL -6397.3 -6364.8

GPD ξ̂ 1.4754 1.6147
β̂ 2.9230·107 2.2886·107

Fγ̂(H) 0.0328 0.0413
logL -6391.5 -6379.4

Burr α̂ 0.8661 14.3369
β̂ 4.3835·106 1.1987·104

τ̂ 0.8884 0.3829
Fγ̂(H) 0.0405 0.2097
logL -15108.7 -15112.0

logSα α̂ 2.0000 2.0000
β̂ 0.9697 0.8195
σ̂ 1.4294 1.6476
µ̂ 17.5163 17.1535

Fγ̂(H) 0.0336 0.0760
logL -6382.7 -6366.8

SαS α̂ 0.5902 0.5478
σ̂ 2.7196·107 1.9925·107

Fγ̂(H) 0.0358 0.0536
logL -29830.8 -12042.0
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Table 8.10: Parameter estimates, F (H), and log-likelihood values for the “naive”
and conditional approaches for the “Technology” type losses.

γ̂,Fγ̂(H),logL “Naive” Conditional
Exp λ̂ 1.2914·10−8 1.3083·10−8

Fγ̂(H) 0.0128 0.0130
logL -1284.1 -1283.2

LN µ̂ 16.6176 15.1880
σ̂ 1.9390 2.7867

Fγ̂(H) 0.0742 0.3112
logL -1252.8 -1243.7

Gam α̂ 0.4217 7.5176·10−6

β̂ 5.4458·10−9 2.3538·10−9

Fγ̂(H) 0.1250 ≈ 1
logL -1189.8 -1180.9

Weib β̂ 6.3668·10−5 0.0103
α̂ 0.5490 0.2938

Fγ̂(H) 0.1177 0.4485
logL -1256.7 -1242.1

logWeib β̂ 1.9309·10−12 11.0647·10−8

α̂ 9.4244 5.7555
Fγ̂(H) 0.1023 0.3329
logL -1254.8 -1242.7

GPD ξ̂ 1.5823 2.0925
β̂ 1.0470·107 0.3446·107

Fγ̂(H) 0.0851 0.2029
logL -1256.0 -1247.5

Burr α̂ 0.0645 0.0684
β̂ 1.7210·1035 8.7406·1020

τ̂ 5.8111 5.2150
Fγ̂(H) 0.0227 0.8042
logL -1251.3 -1358.7

logSα α̂ 2.0000 2.0000
β̂ 0.7422 0.8040
σ̂ 1.3715 1.9894
µ̂ 16.6181 15.1351

Fγ̂(H) 0.0747 0.3195
logL -1252.8 -1243.6

SαS α̂ 0.1827 0.1827
σ̂ 0.1676·107 0.1676·107

Fγ̂(H) 0.3723 0.3723
logL -5038.4 -1449.2
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Table 8.11: Parameter estimates, F (H), and log-likelihood values for the “naive”
and conditional approaches for the “External” type losses.

γ̂,Fγ̂(H),logL “Naive” Conditional
Exp λ̂ 9.6756·10−9 9.7701·10−9

Fγ̂(H) 0.0096 0.0097
logL -4532.7 -4530.5

LN µ̂ 16.5789 15.7125
σ̂ 1.7872 2.3639

Fγ̂(H) 0.0610 0.2111
logL -4328.8 -4304.4

Gam α̂ 0.3574 1.5392·10−6

β̂ 3.4585·10−9 1.6571·10−9

Fγ̂(H) 0.1480 ≈ 1
logL -4166.7 -4129.4

Weib β̂ 1.1613·10−4 0.0108
α̂ 0.5175 0.2933

Fγ̂(H) 0.1375 0.4629
logL -4361.4 -4303.6

logWeib β̂ 3.1933·10−12 2.8169·10−8

α̂ 9.2660 6.2307
Fγ̂(H) 0.1111 0.3016
logL -4347.2 -4303.7

GPD ξ̂ 1.2481 1.5352
β̂ 1.2588·107 0.7060·107

Fγ̂(H) 0.0730 0.1203
logL -4333.0 -4310.9

Burr α̂ 0.0987 0.1284
β̂ 2.5098·1026 3.2497·1020

τ̂ 4.2672 3.3263
Fγ̂(H) 0.0145 0.0311
logL -4327.1 -4329.6

logSα α̂ 1.8545 1.3313
β̂ 1 -1
σ̂ 1.1975 2.7031
µ̂ 16.6536 10.1928

Fγ̂(H) 0.0331 0.9226
logL -4330.2 -4569.0

SαS α̂ 0.6820 0.5905
σ̂ 1.1395·107 0.7073·107

Fγ̂(H) 0.0715 0.1283
logL -20807.0 -7800.2

111



Table 8.12: Goodness-of-fit test statistics and corresponding p-values (in square
brackets) for the conditional loss distributions fitted to the “Human” loss data.

KS V AD AD2 W 2

Exp 14.0246 14.9145 2.4·106 609.15 80.3703
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.8758 1.5265 3.9829 0.7505 0.0804
[0.032] [0.039] [0.126] [0.044] [0.166]

Weib 0.8065 1.5439 4.3544 0.7908 0.0823
[0.103] [0.051] [0.095] [0.068] [0.188]

logWeib 0.9030 1.5771 4.1343 0.7560 0.0915
[0.074] [0.050] [0.115] [0.115] [0.217]

GPD 1.4022 2.3920 3.6431 2.7839 0.3669
[<0.005] [<0.005] [0.167] [<0.005] [<0.005]

Burr 2.2333 3.1970 4.7780 7.0968 1.2830
[0.115] [0.115] [0.174] [0.115] [0.115]

logSα 9.5186 9.5619 36.2617 304.61 44.5156
[0.319] [0.324] [0.250] [0.312] [0.315]

SαS 1.1628 2.1537 5.8·105 11.9320 0.2535
[0.352] [0.026] [0.651] [0.971] [0.027]

Table 8.13: Goodness-of-fit test statistics and corresponding p-values (in square
brackets) for the conditional loss distributions fitted to the “Processes” loss data.

KS V AD AD2 W 2

Exp 7.6043 8.4160 3.7·106 167.60 22.5762
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.6584 1.1262 2.0668 0.4624 0.0603
[0.297] [0.345] [0.508] [0.223] [0.294]

Weib 0.6110 1.0620 1.7210 0.2069 0.0338
[0.455] [0.532] [0.766] [0.875] [0.755]

logWeib 0.5398 0.9966 1.6238 0.1721 0.0241
[0.656] [0.637] [0.832] [0.945] [0.918]

GPD 1.0042 1.9189 4.0380 2.6022 0.3329
[0.005] [<0.005] [0.128] [<0.005] [<0.005]

Burr 0.5634 0.9314 1.6075 0.2639 0.0323
[0.598] [0.800] [0.841] [0.794] [0.840]

logSα 0.6931 1.1490 2.0109 0.4759 0.0660
[0.244] [0.342] [0.534] [0.202] [0.258]

SαS 1.3949 1.9537 3.3·105 6.5235 0.3748
[0.085] [0.067] [0.931] [0.964] [0.102]
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Table 8.14: Goodness-of-fit test statistics and corresponding p-values (in square
brackets) for the conditional loss distributions fitted to “Technology” loss data.

KS V AD AD2 W 2

Exp 3.2160 3.7431 27.6434 27.8369 2.9487
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 1.1453 1.7896 2.8456 1.3778 0.2087
[<0.005] [0.005] [0.209] [<0.005] [<0.005]

Weib 1.0922 1.9004 2.6821 1.4536 0.2281
[<0.005] [<0.005] [0.216] [<0.005] [<0.005]

logWeib 1.1099 1.9244 2.7553 1.5355 0.2379
[<0.005] [<0.005] [0.250] [<0.005] [<0.005]

GPD 1.2202 1.8390 3.0843 1.6182 0.2408
[<0.005] [<0.005] [0.177] [<0.005] [<0.005]

Burr 1.1188 0.9374 2.6949 2.0320 0.3424
[0.389] [0.380] [0.521] [0.380] [0.380]

logSα 1.1540 1.7793 2.8728 1.3646 0.2071
[<0.005] [0.007] [0.208] [<0.005] [<0.005]

SαS 2.0672 2.8003 2.7·105 19.6225 1.4411
[>0.995] [>0.995] [>0.995] [>0.995] [0.964]

Table 8.15: Goodness-of-fit test statistics and corresponding p-values (in square
brackets) for the conditional loss distributions fitted to “External” loss data.

KS V AD AD2 W 2

Exp 6.5941 6.9881 4.4·106 128.35 17.4226
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.6504 1.2144 2.1702 0.5816 0.0745
[0.326] [0.266] [0.469] [0.120] [0.210]

Weib 0.4752 0.9498 2.4314 0.3470 0.0337
[0.852] [0.726] [0.384] [0.519] [0.781]

logWeib 0.6893 1.1020 2.2267 0.4711 0.0563
[0.296] [0.476] [0.481] [0.338] [0.458]

GPD 0.9708 1.8814 2.7742 1.7091 0.2431
[0.009] [<0.005] [0.284] [<0.005] [<0.005]

Burr 1.3266 2.0385 2.8775 2.8954 0.5137
[0.050] [0.048] [0.328] [0.048] [0.048]

logSα 7.3275 7.4089 37.4863 194.74 24.3662
[0.396] [0.458] [0.218] [0.284] [0.366]

SαS 0.7222 1.4305 1.1·105 1.7804 0.1348
[0.586] [0.339] [0.990] [0.980] [0.265]
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Table 8.16: Estimates of one-year ahead EL, VaR, and CVaR (×1010) for the
“naive” and conditional approaches for “Human” type losses.

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

LN
“Naive” 0.1981 0.4970 0.9843 0.8534 1.6652

Conditional 0.4171 1.2161 3.4190 3.3869 9.4520
Weib

“Naive” 0.1993 0.4017 0.5507 0.4945 0.6456
Conditional 0.2881 0.7997 1.5772 1.3232 2.3746

logWeib

“Naive” - 0.4174 0.6184 - -
Conditional - 0.8672 1.8603 - -

GPD
“Naive” - 3.9831 33.5741 - -

Conditional - 12.1150 168.64 - -
Burr

“Naive” - 85.5620 2690.44 - -
Conditional - 94.8281 3042.32 - -

logSα

“Naive” - 1.9·107 7.2·1024 - -
Conditional - 2.2737 4.2319 - -

SαS
“Naive” - 6.2811 77.4762 - -

Conditional - 14.5771 203.24 - -
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Table 8.17: Estimates of one-year ahead EL, VaR, and CVaR (×1010) for the
“naive” and conditional approaches for “Processes” type losses.

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

LN
“Naive” 0.5622 1.5508 3.5665 3.1201 6.9823

Conditional 0.8457 2.5610 6.5625 5.7823 13.9079
Weib

“Naive” 0.4170 0.8800 1.2102 1.0891 1.4311
Conditional 0.5131 1.2761 2.1308 1.8257 2.8578

logWeib

“Naive” - 0.9611 1.4498 - -
Conditional - 1.4780 2.6511 - -

GPD
“Naive” - 12.5930 131.25 - -

Conditional - 20.8700 262.52 - -
Burr

“Naive” - 6.8569 52.0391 - -
Conditional - 1.7987 4.1859 - -

logSα

“Naive” - 1.5613 3.5159 - -
Conditional - 2.5394 6.7070 - -

SαS
“Naive” - 38.7627 529.99 - -

Conditional - 74.9073 1280.02 - -
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Table 8.18: Estimates of one-year ahead EL, VaR, and CVaR (×1010) for the
“naive” and conditional approaches for “Technology” type losses.

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

LN
“Naive” 0.0324 0.1202 0.3593 0.2970 0.7303

Conditional 0.0958 0.2898 1.2741 1.5439 5.4865
Weib

“Naive” 0.0226 0.0798 0.1368 0.1159 0.1795
Conditional 0.0358 0.1454 0.3625 0.2958 0.6180

logWeib

“Naive” - 0.0861 0.1683 - -
Conditional - 0.1670 0.4747 - -

GPD
“Naive” - 0.4415 5.6954 - -

Conditional - 1.6249 54.4650 - -
Burr

“Naive” - 2.8840 158.94 - -
Conditional - 9.0358 855.78 - -

logSα

“Naive” - 0.1222 0.3560 - -
Conditional - 0.2990 1.2312 - -

SαS
“Naive” - 4.9·105 3.2·109 - -

Conditional - 7.1·106 6.9·1010 - -
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Table 8.19: Estimates of one-year ahead EL, VaR, and CVaR (×1010) for the
“naive” and conditional approaches for “External” type losses.

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

LN
“Naive” 0.0157 0.0613 0.1697 0.1450 0.3451

Conditional 0.0327 0.1126 0.4257 0.3962 1.1617
Weib

“Naive” 0.0151 0.0613 0.1190 0.0975 0.1628
Conditional 0.0208 0.0885 0.2494 0.2025 0.4509

logWeib

“Naive” - 0.0611 0.1309 - -
Conditional - 0.0839 0.2489 - -

GPD
“Naive” - 0.1190 0.8381 - -

Conditional - 0.2562 2.6514 - -
Burr

“Naive” - 0.4072 8.7417 - -
Conditional - 0.7165 15.8905 - -

logSα

“Naive” - 0.1054 3.7687 - -
Conditional - 0.3879 0.8064 - -

SαS
“Naive” - 0.1730 1.8319 - -

Conditional - 0.4714 7.6647 - -
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Table 8.20: Average forecast errors for “Human” type aggregated losses. Left:
errors between corresponding quantiles; middle: errors of forecasted quantiles
relative to realized loss; right: overall error between forecasted and realized loss.

Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0234 0.1082 0.1340 0.2867
50 0.0552 0.1847 0.0696 0.2070
75 0.0887 0.2432 0.0719 0.2314
95 0.9726 0.8818 1.9093 1.3553
99 16.1004 3.9229 22.1948 4.6771

99.9 518.30 21.9305 562.41 22.9933

35.7234 0.5449

Weib

25 0.0226 0.1077 0.1315 0.2842
50 0.0594 0.1937 0.0748 0.2159
75 0.1016 0.2524 0.0527 0.1937
95 0.2373 0.4028 0.5274 0.6930
99 1.1885 1.0042 2.8841 1.6796

99.9 9.9539 2.9937 16.8131 4.0560

0.2545 0.3286

logWeib

25 0.0231 0.1074 0.1330 0.2862
50 0.0585 0.1907 0.0738 0.2129
75 0.0971 0.2429 0.0534 0.1970
95 0.3158 0.4950 0.7258 0.8181
99 2.4188 1.4129 4.8112 2.1663

99.9 32.7795 5.6141 45.4473 6.6756

0.4104 0.3584

GPD

25 0.0017 0.1070 0.1026 0.2493
50 0.0062 0.1991 0.0604 0.2010
75 1.8709 1.3121 2.3376 1.4844
95 755.17 26.8771 783.21 27.3695
99 2.0·105 430.82 2.0·105 431.57

99.9 5.9·108 2.1·104 5.9·108 2.1·104

1.1·1011 1996.5

Burr

25 0.0073 0.2000 0.0697 0.2146
50 1.4999 1.0885 1.4432 1.0600
75 65.7098 7.6095 68.3058 7.7819
95 8.6·104 272.76 8.6·104 273.25
99 6.4·107 7733.8 6.4·107 7734.5

99.9 3.5·1012 1.5·106 3.5·1012 1.5·106

8.1·1017 4.2·106

logSα

25 0.0230 0.1081 0.1322 0.2839
50 0.0545 0.1865 0.0689 0.2090
75 0.0876 0.2528 0.0683 0.2144
95 0.7972 0.7504 1.6497 1.2440
99 11.7047 3.1938 16.8163 3.9486

99.9 353.01 17.2799 389.68 18.3389

4.1107 0.4811

SαS

25 0.0190 0.1137 0.0964 0.2457
50 0.0874 0.2288 0.0833 0.2202
75 2.1481 1.3854 2.6382 1.5585
95 620.66 24.3374 645.52 24.8316
99 9.3·104 298.99 9.3·104 299.74

99.9 1.9·108 1.4·104 1.9·108 1.4·104

2.5·108 248.42
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Table 8.21: Average forecast errors for “Processes” type aggregated losses. Left:
errors between corresponding quantiles; middle: errors of forecasted quantiles
relative to realized loss; right: overall error between forecasted and realized loss.

Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.1845 0.3767 0.7813 0.6932
50 0.5499 0.5703 0.6100 0.6027
75 1.0214 0.6848 0.4277 0.4759
95 2.5537 1.4027 2.1662 1.3522
99 17.5320 3.9941 22.9917 4.5137

99.9 372.16 17.7825 423.24 19.5002

4.8553 0.8211

Weib

25 0.1792 0.3718 0.7686 0.6856
50 0.5613 0.5787 0.6226 0.6116
75 1.1229 0.7448 0.4656 0.5072
95 2.2488 0.9302 0.5310 0.6656
99 3.4129 1.3507 1.7793 1.2427

99.9 7.3804 2.3555 8.5875 2.7014

0.6909 0.6418

logWeib

25 0.1815 0.3737 0.7748 0.6895
50 0.5588 0.5765 0.6212 0.6096
75 1.1028 0.7324 0.4556 0.4948
95 2.2039 0.9722 0.6675 0.7635
99 4.0523 1.7245 3.5640 1.7009

99.9 19.5854 4.1441 26.7134 4.7749

0.8050 0.6653

GPD

25 0.1808 0.3723 0.7738 0.6878
50 0.4797 0.5170 0.5314 0.5491
75 1.2251 1.0102 1.0405 0.9499
95 348.86 16.6486 371.07 17.4765
99 7.7·104 241.57 7.8·104 242.82

99.9 4.7·108 1.6·104 4.7·108 1.6·104

1.3·1010 684.34

Burr

25 0.1912 0.3823 0.7968 0.7014
50 0.5625 0.5791 0.6237 0.6119
75 0.9859 0.6680 0.4165 0.4989
95 5.5129 2.1175 6.8680 2.2928
99 204.42 12.6032 232.35 13.8325

99.9 3.3·104 162.51 3.4·104 164.23

3.3·104 2.6236

logSα

25 0.1835 0.3758 0.7795 0.6919
50 0.5532 0.5729 0.6136 0.6059
75 1.0425 0.6940 0.4320 0.4572
95 2.3285 1.2779 1.6237 1.1215
99 14.6743 3.2239 18.9137 3.7639

99.9 327.02 13.9361 367.72 15.6366

3.1026 0.7709

SαS

25 0.1554 0.3542 0.7137 0.6587
50 0.4121 0.4724 0.4522 0.4945
75 3.4738 1.7482 3.8926 1.7777
95 1949.9 42.5619 2010.8 43.3890
99 7.0·105 785.20 7.0·105 786.43

99.9 2.4·109 4.7·104 2.4·109 4.7·104

8.1·1012 1.4·104
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Table 8.22: Average forecast errors for “Technology” type aggregated losses. Left:
errors between corresponding quantiles; middle: errors of forecasted quantiles
relative to realized loss; right: overall error between forecasted and realized loss.

Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0005 0.0146 0.0011 0.0205
50 0.0008 0.0251 0.0008 0.0256
75 0.0037 0.0514 0.0040 0.0534
95 0.1968 0.4199 0.2118 0.4381
99 3.8728 1.8794 3.9690 1.9052

99.9 154.56 12.1107 155.26 12.1468

29.1823 0.1734

Weib

25 0.0005 0.0149 0.0010 0.0202
50 0.0007 0.0246 0.0008 0.0251
75 0.0023 0.0440 0.0023 0.0422
95 0.0295 0.1628 0.0346 0.1812
99 0.1884 0.4253 0.2090 0.4512

99.9 1.1553 1.0500 1.2259 1.0858

0.0129 0.0537

logWeib

25 0.0005 0.0148 0.0010 0.0204
50 0.0007 0.0243 0.0008 0.0248
75 0.0024 0.0454 0.0025 0.0432
95 0.0404 0.1924 0.0466 0.2106
99 0.3151 0.5512 0.3425 0.5770

99.9 3.2761 1.7834 3.3963 1.8192

0.0271 0.0612

GPD

25 0.0005 0.0140 0.0011 0.0206
50 0.0008 0.0254 0.0008 0.0259
75 0.0178 0.1108 0.0191 0.1176
95 44.4984 5.3895 44.6978 5.4077
99 6.9·104 185.52 6.9·104 185.55

99.9 9.1·108 2.2·104 9.1·108 2.2·104

4.0·1010 1599.5

Burr

25 0.0005 0.0138 0.0011 0.0205
50 0.0010 0.0288 0.0010 0.2927
75 0.1000 0.2734 0.1037 0.2803
95 1838.9 34.7495 1840.1 34.7676
99 2.2·107 3360.1 2.2·107 3360.2

99.9 3.6·1013 3.9·1016 3.6·1013 3.9·106

4.6·1020 9.7·107

logSα

25 0.0005 0.0145 0.0011 0.0204
50 0.0008 0.0251 0.0008 0.0256
75 0.0037 0.0515 0.0041 0.0541
95 0.1965 0.4220 0.2117 0.4403
99 4.4264 1.9974 4.5241 2.0233

99.9 305.95 15.3729 306.88 15.4089

4.6680 0.1680

SαS

25 79.7415 4.1267 79.6492 4.1191
50 1.1·106 443.75 1.1·106 443.75
75 1.0·1011 1.3·105 1.0·1011 1.3·105

95 4.9·1020 8.4·109 4.9·1020 8.4·109

99 1.1·1030 4.0·1014 1.1·1030 4.0·1014

99.9 1.4·1045 1.4·1022 1.4·1045 1.4·1022

4.1·1063 2.4·1029
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Table 8.23: Average forecast errors for “External” type aggregated losses. Left:
errors between corresponding quantiles; middle: errors of forecasted quantiles
relative to realized loss; right: overall error between forecasted and realized loss.

Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0006 0.0222 0.0016 0.0353
50 0.0016 0.0287 0.0016 0.0295
75 0.0088 0.0731 0.0106 0.0836
95 0.2182 0.4012 0.2563 0.4449
99 2.5172 1.4166 2.7096 1.4796

99.9 60.6060 6.9971 62.0201 7.0857

0.6723 0.1351

Weib

25 0.0006 0.0219 0.0015 0.0348
50 0.0015 0.0281 0.0016 0.0289
75 0.0065 0.0619 0.0078 0.0724
95 0.0780 0.2426 0.1004 0.2862
99 0.4396 0.6138 0.5223 0.6768

99.9 3.1658 1.6437 3.4673 1.7296

0.0360 0.0841

logWeib

25 0.0006 0.0218 0.0015 0.0350
50 0.0015 0.0282 0.0015 0.0289
75 0.0064 0.0608 0.0078 0.0713
95 0.0938 0.2569 0.1177 0.3007
99 0.6237 0.7115 0.7186 0.7750

99.9 7.4055 2.4166 7.8048 2.5032

0.0716 0.0899

GPD

25 0.0007 0.0230 0.0017 0.0359
50 0.0028 0.0349 0.0028 0.0349
75 0.0540 0.1674 0.0059 0.1779
95 19.5035 3.2362 19.8077 3.2804
99 6988.76 54.7280 6995.41 54.7908

99.9 3.1·107 3054.17 3.1·107 3054.26

0.56·1010 309.80

Burr

25 0.0008 0.0244 0.0017 0.0373
50 0.0194 0.0714 0.0109 0.0713
75 0.5632 0.5450 0.5812 0.5555
95 1286.89 25.4530 1289.38 25.4968
99 0.2·107 991.46 0.2·107 991.52

99.9 4.5·1010 1.4·105 4.5·1010 1.4·105

40.0·1010 6604.93

logSα

25 0.0006 0.0223 0.0015 0.0353
50 0.0016 0.0284 0.0016 0.0291
75 0.0064 0.0626 0.0078 0.0731
95 0.0899 0.2662 0.1150 0.3099
99 0.6948 0.7844 0.7980 0.8476

99.9 8.5024 2.7599 8.9913 2.8457

0.0844 0.0937

SαS

25 0.0007 0.0223 0.0015 0.0354
50 0.0038 0.0429 0.0038 0.0427
75 0.0782 0.2175 0.0851 0.2280
95 26.1532 4.1342 26.5507 4.1781
99 6397.98 63.2193 6406.84 63.2823

99.9 2.8·107 3339.51 2.8·107 3339.60

0.03·1010 130.60
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Table 8.24: Averaged p-values for “Human” type aggregated losses in the 7-year
forecast period.

LN Weib logWeib GPD Burr logSα SαS

Ave. p-value 0.4993 0.5310 0.5204 0.4530 0.4659 0.4115 0.0923

Table 8.25: Averaged p-values for “Processes” type aggregated losses in the 7-year
forecast period.

LN Weib logWeib GPD Burr logSα SαS

Ave. p-value 0.2462 0.2392 0.2431 0.2526 0.2433 0.1339 0.2103

Table 8.26: Averaged p-values for “Technology” type aggregated losses in the
7-year forecast period.

LN Weib logWeib GPD Burr logSα SαS

Ave. p-value 0.5238 0.5165 0.5107 0.5185 0.5210 0.3354 0.3247

Table 8.27: Averaged p-values for “External” type aggregated losses in the 7-year
forecast period.

LN Weib logWeib GPD Burr logSα SαS

Ave. p-value 0.4739 0.4617 0.4751 0.4682 0.4210 0.0156 0.4768
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Chapter 9

Goodness-of-Fit Tests for

Heavy-Tailed Loss Data

9.1 Introduction

In most loss models, the central attention is devoted to studying the distributional

properties of the loss data. The shape of the dispersion of the data determines

the vital statistics such as the expected loss, variance, and ruin probability, Value-

at-Risk or Conditional Value-at-Risk where the shape in the right tail is crucial.

Parametric procedures for testing the goodness of fit (GOF) include the Likelihood

Ratio test and Chi-squared test; non-parametric tests include visual examination

of QQ-plots and mean excess plots. A standard semi-parametric procedure to test

how well a hypothesized distribution fits the data involves applying the in-sample

GOF tests that provide a comparison of the fitted distribution to the empirical

distribution (EDF). These tests, referred to as EDF tests, include the Kolmogorov-

Smirnov test, Kuiper test, Anderson-Darling test, and the Cramér-von Mises tests.

Related works include [6] [7] [47] [149].
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In this chapter we consider tests of a composite hypothesis that the empirical

distribution function of an observed loss data sample belongs to a family of hy-

pothesized distributions (with parameters not specified). For an iid sample drawn

from continuous cdf F , for a family of continuous distributions F , the null and

alternative hypotheses are summarized as:

H0 : F (x) ∈ F(x) HA : F (x) /∈ F(x). (9.1)

For example, to test whether the sample is drawn from a Lognormal distribution,

we formulate the null hypothesis as H0 : F (x) ∈ F(x) = {LN µ,σ(x) : µ ∈ <, σ >

0}.

Under the null Equation (9.1), F(X) ∼ U [0, 1], and the null is rejected if the

p-value is lower than the level α, such as α from 5% to 10%. Letting D be the

observed value of a GOF statistic and d the critical value for a given level α, the

p-value is computed as p-value = P (D ≥ d). Since the distribution of the statistic

is not parameter-free, one way to compute the p-values and the critical values is by

means of Monte Carlo simulation, for each hypothesized fitted distribution [144].

Under the procedure, the observed value D is computed. Then, for a given level

α the following algorithm is applied:

1. Generate large number of samples (e.g. I =1,000) from the fitted truncated

distribution of size n equal to the number of observed data (such that all

these points are above or equal to H);

2. Fit truncated distribution and estimate conditional parameters θ̂ for each

sample i = 1, 2, ...I;

3. Estimate the GOF statistic value Di for each sample i = 1, 2, ...I;
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4. Calculate p-value as the proportion of times the sample statistic values ex-

ceed the observed value D of the original sample;

5. Reject H0 if the p-value is smaller than α.

In this chapter we propose two new EDF statistics to be used for the situations

when the fit in the upper tail is of the central concern. Application of the modified

EDF tests to operational loss data obtained from European public operational

loss datatabase, and the USA natural catastrophe insurance claims data obtained

from Insurance Services Office Inc. Property Claim Services, is presented in §9.4.

Necessary derivations are provided in the Appendix.

9.2 Overview of Common EDF-Based Goodness-

of-Fit Statistics

The EDF statistics are based on the vertical differences between the empirical and

fitted distribution function.

Definition 13 (Empirical distribution function) Let {X(j)}1≤j≤n be a vector of

the order statistics, such that X(1) ≤ X(2) ≤ ... ≤ X(n). Empirical distribution

function (EDF) of the sample is defined as

Fn(x) := n−1

n∑
k=1

I{Xk≤x}

=


0 x < x(1)

j
n

x(j) ≤ x < x(j+1), j = 1, 2, ..., n− 1

1 x ≥ xn.

(9.2)

EDF statistics are divided into two classes:
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1. Supremum class includes statistics that represent a measure based on the

maximum distance between the fitted and empirical cdf.

2. Quadratic class includes statistics that represent a measure based on the

integral of the distance between the fitted and empirical cdf on the entire

range of the support of X.

We review some commonly used statistics. The first three statistics described

below belong to the supremum class.

Definition 14 (Kolmogorov-Smirnov statistic) The Kolmogorov-Smirnov (KS)

statistic is defined by:

KS =
√
n sup

x
|Fn(x)− F (x)| . (9.3)

Definition 15 (Kuiper statistic) The Kuiper (V) statistic is defined by:

V = KS+ +KS−, (9.4)

where

KS+ =
√
n sup

x
{Fn(x)− F (x)} ,

KS− =
√
n sup

x
{F (x)− Fn(x)} . (9.5)

Definition 16 (supremum class Anderson-Darling statistic) The supremum class

Anderson-Darling (AD) statistic is defined by:

AD =
√
n sup

x

∣∣∣∣∣∣ Fn(x)− F (x)√
F (x)

(
1− F (x)

)
∣∣∣∣∣∣ . (9.6)
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The quadratic statistics for complete data samples are grouped under the

Cramér-von Mises family.

Definition 17 (Cramér statistic) The Cramér family of quadratic statistics is

defined by:

Q = n

∞∫
−∞

(
Fn(x)− F (x)

)2
ψ(F (x))dF (x), (9.7)

in which the weight function ψ(F (x)) is assigned to give a certain weight to dif-

ferent observations.

Common quadratic class statistics defined by different weight function are as

follows:

Cramér-von Mises statistic (W 2): ψ(F (x)) = 1,

Anderson-Darling statistic (AD2): ψ(F (x)) =
{
F (x)

(
1− F (x)

)}−1
.

Definition 18 (Cramér-von Mises statistic) The Cramér-von Mises (W 2) statis-

tic is defined by:

W 2 = n

∞∫
−∞

(
Fn(x)− F (x)

)2
dF (x). (9.8)

Definition 19 (quadratic class Anderson-Darling statistic) The quadratic class

Anderson-Darling (AD2) statistic is defined by:

AD2 = n

∞∫
−∞

(
Fn(x)− F (x)

)2
F (x)

(
1− F (x)

) dF (x). (9.9)

It is notable that in financial loss models, the dataset analyzed is often in-

complete, in the sense that the observations that are present in the loss database
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only if they exceed a pre-determined threshold level.1 While this problem is usu-

ally absent in risk models involving market risk and credit risk, in operational

risk, banks’ internal databases are subject to a minimum recording thresholds of

roughly $6,000-$10,000, and external databases usually collect operational losses

starting from $1 million [27]. Similarly, in non-life insurance models, the thresh-

olds are set at $5 million, $25 million, or other levels. With left-truncated data it

is inappropriate to employ standard GOF tests, and the form of the cdf needs to

be appropriately adjusted:

F (x|x > H) =
F (x)− F (H)

1− F (H)
, (9.10)

where H is the left-truncation point. GOF tests for truncated and censored data

have been studied by [53] [77] [85] among others.

9.3 “Upper Tail” Anderson-Darling Statistic

In practice, often situations arise when it is necessary to test whether a distribution

fits the data well mainly in the upper tail, and the fit in the lower tail or around

the median is of little or less importance. Examples include operational risk and

insurance claims modelling, in which goodness of the fit in the tails determines the

Value-at-Risk or Conditional Value-at-Risk measures and the ruin probabilities.

Given the Basel II recommendations, under the LDA, the operational risk capital

charge is derived from the Value-at-Risk measure, which requires an accurate

estimate of the upper tail of the loss distribution. Similarly, in insurance, the

upper tail of the claim size distribution is vital to obtain the right estimates of

ruin probability. For this purpose, we introduce a statistic, which we refer to as

1See Chapter 8 for the discussion of left-truncated distributions.
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the “upper tail” Anderson-Darling statistic. We propose two different versions of

it: the supremum class “upper tail” Anderson-Darling statistic (ADup) and the

quadratic class “upper tail” Anderson-Darling statistic (AD2
up).

9.3.1 Supremum Class “Upper Tail” Anderson-Darling

Statistic

The first version of the “upper tail” Anderson-Darling statistic belongs to the

supremum class EDF statistics. Each observation of the KS statistic is assigned

a weight of ψ(F (x)) =
{(

1−F (x)
)}−1

. Under this specification, the observations

in the upper tail are assigned a higher weight than those in the lower tail. Let

{X(j)}1≤j≤n be the vector of the order statistics, such that X(1) ≤ X(2) ≤ ... ≤ X(n).

Definition 20 (supremum class “upper tail” Anderson-Darling statistic) The supre-

mum class “upper tail” Anderson-Darling (ADup) statistic is defined as

ADup =
√
n sup

x

∣∣∣∣Fn(x)− F (x)

1− F (x)

∣∣∣∣ . (9.11)

Derivation of the computing formula makes use of Equation (9.2) and involves

the Probability Integral Transformation (PIT) technique [47]. Denoting zj :=

F̂γ(x(j)), the computing formula is derived from:

AD+
up =

√
n sup

j

{
j
n
− zj

1− zj

}
,

AD−
up =

√
n sup

j

{
zj − j−1

n

1− zj

}
,

and becomes

ADup = max{AD+
up, AD

−
up}. (9.12)
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Figure 9.1: Weights associated with goodness-of-fit statistics assigned to observa-
tions in x, for a Lognormal(µ = 1, σ = 1) example. Left panel: supremum class
statistics, right panel: quadratic class statistics.
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(b) Quadratic class

9.3.2 Quadratic Class “Upper Tail” Anderson-Darling

Statistic

Another way to define the “upper tail” Anderson-Darling statistic is by an integral

of the Cramér-von Mises family (see Equation (9.7)) with the weighting function

of the form ψ(F (x)) =
{
1− F (x)

}−2
, that gives a higher weight to the upper tail

and a lower weight to the lower tail. Let {X(j)}1≤j≤n be the vector of the order

statistics, such that X(1) ≤ X(2) ≤ ... ≤ X(n).

Definition 21 (quadratic class “upper tail” Anderson-Darling statistic) The quadratic

class “upper tail” Anderson-Darling (AD2
up) statistic is defined as

AD2
up = n

∞∫
−∞

(
Fn(x)− F (x)

)2(
1− F (x)

)2 dF (x). (9.13)
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Figure 9.1 compares the weight functions (as a function of x) associated with

each of the GOF statistics.

Proposition 1 Let zj := F̂γ(x(j)). Then the computing formula for the AD2
up

statistic can be expressed as:

AD2
up = 2

n∑
j=1

log
(
1− zj

)
+

1

n

n∑
j=1

(
1 + 2(n− j)

) 1

1− zj

. (9.14)

Proof:

AD2
up = n

+∞∫
−∞

(
Fn(x)− F̂ (x)

)2(
1− F̂ (x)

)2 dF̂ (x)
PIT
= n

1∫
0

(
Fn(z)− z

)2
(1− z)2

dz

by the PIT method, where Fn(Z) = F (Fn(X)) = Fn(X) is the EDF of Z =

F̂γ(X) = F (F̂γ(X)) so that F (·) ∼ U [0, 1].

Using Equation (9.2), the computing formula is expressed in terms of zj :=

F̂γ(x(j)) = F (F̂γ(x(j))), j = 1, 2, ..., n as

n−1AD2
up =

∫ z1

0

z2

(1− z)2
dz︸ ︷︷ ︸

A

+
n−1∑
j=1

∫ zj+1

zj

(
j
n
− z
)2

(1− z)2
dz︸ ︷︷ ︸

B

+

∫ 1

zn

(
1− z

)2
(1− z)2

dz︸ ︷︷ ︸
C

Separately solving for A, B and C yields

A = z1 − 1 +
1

1− z1

+ 2 log(1− z1);
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B = zn − z1 −
1

n2

n−1∑
j=1

(n− j)2
( 1

1− zj

− 1

1− zj+1

)
− ...

− 2
1

n

n−1∑
j=1

(n− j)
(

log(1− zj)− log(1− zj+1)
)

= zn − z1 −
1

1− z1

+
1

n2

n∑
j=1

(
1 + 2(n− j)

) 1

1− zj

− ...

− 2 log(1− z1) + 2
1

n

n∑
j=1

log(1− zj);

C = 1− zn.

Summing the terms A, B and C, multiplying by n, and simplifying yields the

resulting computing formula:

AD2
up = 2

n∑
j=1

log
(
1− zj

)
+

1

n

n∑
j=1

(
1 + 2(n− j)

) 1

1− zj

.

�

Table 9.1 summarizes the EDF statistics and their computing formulae.

9.4 Application to Financial Loss Data

In this section we apply the GOF testing procedure to (1) operational loss data

extracted from a public database and (2) catastrophe insurance claims data. The

operational loss data set was described in Chapter 5 §5.2 p.31. We remind the

reader that the dataset covered 1980-2002 losses of five types: “Relationship,”
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Table 9.1: Description of EDF statistics and computing formulae. We use nota-
tions: zj := F̂γ(x(j)), j = 1, 2, ..., n.

Statistic Description and computing formula

KS KS :=
√
n sup

x
|Fn(x)− F (x)|

Computing formula:

KS =
√
nmax

{
sup

j

{
j
n − zj

}
, sup

j

{
zj − j−1

n

}}
V V :=

√
n
(
sup

x
{Fn(x)− F (x)}+ sup

x
{F (x)− Fn(x)}

Computing formula:

V =
√
n

(
sup

j

{
j
n − zj

}
+ sup

j

{
zj − j−1

n

})

AD AD :=
√
n sup

x

∣∣∣∣∣ Fn(x)−F (x)√
F (x)

(
1−F (x)

)∣∣∣∣∣
Computing formula:

AD =
√
nmax

{
sup

j

{
j
n
−zj√

zj

(
1−zj

)} , sup
j

{
zj− j−1

n√
zj

(
1−zj

)}}
ADup ADup :=

√
n sup

x

∣∣∣Fn(x)−F (x)
1−F (x)

∣∣∣
Computing formula:

ADup =
√
nmax

{
sup

j

{
j
n
−zj

1−zj

}
, sup

j

{
zj− j−1

n
1−zj

}}
AD2 AD2 := n

∞∫
−∞

(
Fn(x)−F (x)

)2
F (x)

(
1−F (x)

) dF (x)

Computing formula:

AD2 = −n+ 1
n

∑n
j=1

(
1− 2j

)
log zj − 1

n

∑n
j=1

(
1 + 2(n− j)

)
log(1− zj)

W 2 W 2 := n
∞∫
−∞

(
Fn(x)− F (x)

)2
dF (x)

Computing formula:

W 2 = n
3 + 1

n

∑n
j=1

(
1− 2j

)
zj +

∑n
j=1 zj

2

AD2
up AD2

up := n
∞∫
−∞

(
Fn(x)−F (x)

)2(
1−F (x)

)2 dF (x)

Computing formula:

AD2
up = 1

n

∑n
j=1

(
1 + 2(n− j)

)
1

(1−zj)
+ 2

∑n
j=1 log(1− zj)
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“Human,” “Processes,” “Technology,” and “External”. The insurance claims data

set covers claims resulting from natural catastrophe events occurred in the United

States over the time period from 1990 to 1996. It was obtained from Insurance

Services Office Inc. Property Claim Services (PCS). The data set includes 222

losses. The data recording is subject to $25 million minimum threshold and so

the observations are greater than $25 million in nominal value. The data were

adjusted for inflation using the Consumer Price Index of the U.S. Department of

Labor.

Left-truncated distributions of eight types were fitted to each of the data set:

Exponential, Lognormal, Weibull, Logweibull,2 GPD, Burr, log-αStable, and sym-

metric αStable. The densities are defined in Chapter 8 §8.5.2. Table 9.2 presents

the observed statistic values and the p-values for the six data sets (five operational

loss datasets and insurance claims dataset).

The results reported in Table 9.2 lead us to conclude the following.

• “Relationship” type operational losses. KS and V tests indicate (both based

on the statistic values and p-values) that the Weibull and Logweibull mod-

els are the most optimal for the data. AD tests suggest that, based on the

p-values, that the symmetric αStable model is the best, followed by log-

αStable and Logweibull. The Logweibull model is also supported by the

W 2 test. However, the ADup and AD2
up tests are in favor of the Lognormal

model; ADup also resulted in high p-values for the GPD, Burr, and sym-

metric αStable models. It is notable that while we may tend to reject the

heavy-tailed GPD and Burr models based on conventional KS test, they

are strongly supported by the “upper tail” tests.

2Estimation of the Logweibull model parameters with the restricted MLE resulted in unac-
ceptable fit for the insurance claims data. Therefore, the corresponding figures are missing from
the table.
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Table 9.2: Goodness-of-fit tests for operational and insurance loss data. p-values
are given in square brackets.

KS V AD ADup AD2 AD2
up W2

“Relationship”

Exp 11.0868 11.9973 1.3·107 1.2·1023 344.37 1.2·1014 50.5365
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.8056 1.3341 2.6094 875.40 0.7554 4.6122 0.1012
[0.082] [0.138] [0.347] [0.593] [0.043] [0.401] [0.086]

Weib 0.5553 1.0821 3.8703 2.7·104 0.7073 24.5068 0.0716
[0.625] [0.514] [0.138] [0.080] [0.072] [0.032] [0.249]

logWeib 0.5284 1.0061 3.0718 7332.07 0.4682 10.1322 0.0479
[0.699] [0.628] [0.255] [0.186] [0.289] [0.102] [0.514]

GPD 1.4797 2.6084 3.5954 374.68 3.7165 22.1277 0.5209
[<0.005] [<0.005] [0.172] [>0.995] [<0.005] [0.048] [<0.005]

Burr 1.3673 2.4165 3.3069 371.65 3.1371 22.0374 0.4310
[0.032] [<0.005] [0.309] [0.960] [<0.005] [0.019] [0.011]

logSα 1.5929 1.6930 3.8184 1075.30 3.8067 10.1990 0.7076
[0.295] [0.295] [0.275] [0.041] [0.290] [0.288] [0.292]

SαS 1.1634 2.0695 1.4·105 5.0·1016 4.4723 2.6·1014 0.3630
[0.034] [<0.005] [>0.995] [0.971] [0.992] [<0.005] [<0.005]

“Human”

Exp 14.0246 14.9145 2.4·106 1.1·1022 609.15 3.0·1012 80.3703
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.8758 1.5265 3.9829 1086.16 0.7505 4.5160 0.0804
[0.032] [0.039] [0.126] [0.462] [0.044] [0.408] [0.166]

Weib 0.8065 1.5439 4.3544 3.2·104 0.7908 8.6610 0.0823
[0.093] [0.051] [0.095] [0.068] [0.053] [0.112] [0.176]

logWeib 0.9030 1.5771 4.1343 1.1·104 0.7560 4.5125 0.0915
[0.074] [0.050] [0.115] [0.160] [0.115] [0.392] [0.217]

GPD 1.4022 2.3920 3.6431 374.68 2.7839 23.7015 0.3669
[<0.005] [<0.005] [0.167] [>0.995] [<0.005] [0.051] [<0.005]

Burr 2.2333 3.1970 4.7780 255.91 7.0968 46.3417 1.2830
[0.115] [0.115] [0.174] [>0.995] [0.115] [0.119] [0.115]

logSα 9.5186 9.5619 36.2617 9846.30 304.61 4198.90 44.5156
[0.319] [0.324] [0.250] [0.354] [0.312] [0.215] [0.315]

SαS 1.1628 2.1537 5.8·105 4.3·1017 11.9320 3.3·1011 0.2535
[0.352] [0.026] [0.651] [0.351] [0.971] [0.436] [0.027]

(Continued on next page)
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Table 9.2 (Continued from previous page)

KS V AD ADup AD2 AD2
up W2

“Processes”

Exp 7.6043 8.4160 3.7·106 1.7·1022 167.61 6.6·105 22.5762
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.6584 1.1262 2.0668 272.61 0.4624 4.0556 0.0603
[0.297] [0.345] [0.508] [0.768] [0.223] [0.367] [0.294]

Weib 0.6110 1.0620 1.7210 2200.75 0.2069 2.2340 0.0338
[0.455] [0.532] [0.766] [0.192] [0.875] [0.758] [0.755]

logWeib 0.5398 0.9966 1.6238 658.42 0.1721 1.4221 0.0241
[0.656] [0.637] [0.832] [0.343] [0.945] [0.977] [0.918]

GPD 1.0042 1.9189 4.0380 148.24 2.6022 13.1082 0.3329
[<0.005] [<0.005] [0.104] [>0.995] [<0.005] [0.087] [<0.005]

Burr 0.5634 0.9314 1.6075 364.08 0.2639 325.76 0.0323
[0.598] [0.800] [0.841] [0.429] [0.794] [0.844] [0.840]

logSα 0.6931 1.1490 2.0109 272.57 0.4759 328.39 0.0660
[0.244] [0.342] [0.534] [0.786] [0.202] [0.361] [0.258]

SαS 1.3949 1.9537 3.3·105 2.5·1017 6.5235 6.8·1014 0.3748
[0.085] [0.067] [0.931] [0.530] [0.964] [0.193] [0.102]

“Technology”

Exp 3.2160 3.7431 27.6434 1.4·106 27.8369 780.50 2.9487
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 1.1453 1.7896 2.8456 41.8359 1.3778 6.4213 0.2087
[<0.005] [0.005] [0.209] [0.994] [<0.005] [0.067] [<0.005]

Weib 1.0922 1.9004 2.6821 52.5269 1.4536 4.8723 0.2281
[<0.005] [<0.005] [0.216] [0.944] [<0.005] [0.087] [<0.005]

logWeib 1.1099 1.9244 2.7553 49.2373 1.5355 5.2992 0.2379
[<0.005] [<0.005] [0.250] [0.976] [<0.005] [0.085] [<0.005]

GPD 1.2202 1.8390 3.0843 33.4298 1.6182 8.8484 0.2408
[<0.005] [<0.005] [0.177] [>0.995] [<0.005] [0.067] [<0.005]

Burr 1.1188 1.9374 2.6949 28.4827 2.0320 10.5469 0.3424
[0.389] [0.380] [0.521] [>0.995] [0.380] [0.401] [0.380]

logSα 1.1540 1.7793 2.8728 41.7454 1.3646 6.4919 0.2071
[<0.005] [<0.005] [0.250] [0.976] [<0.005] [0.060] [<0.005]

SαS 2.0672 2.8003 2.7·105 3.6·1016 19.6225 7.2·1010 1.4411
[>0.995] [>0.995] [>0.995] [>0.995] [>0.995] [>0.995] [0.964]

(Continued on next page)
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Table 9.2 (Continued from previous page)

KS V AD ADup AD2 AD2
up W2

“External”

Exp 6.5941 6.9881 4.4·106 2.0·1022 128.35 5.0·107 17.4226
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.6504 1.2144 2.1702 316.20 0.5816 2.5993 0.0745
[0.326] [0.266] [0.469] [0.459] [0.120] [0.589] [0.210]

Weib 0.4752 0.9498 2.4314 4382.68 0.3470 5.3662 0.0337
[0.852] [0.726] [0.384] [0.108] [0.519] [0.164] [0.431]

logWeib 0.6893 1.1020 2.2267 3130.56 0.4711 4.1429 0.0563
[0.296] [0.476] [0.481] [0.128] [0.338] [0.283] [0.458]

GPD 0.9708 1.8814 2.7742 151.94 1.7091 8.6771 0.2431
[0.009] [0.005] [0.284] [0.949] [<0.005] [0.106] [<0.005]

Burr 1.3266 2.0385 2.8775 113.13 2.8954 15.4410 0.5137
[0.050] [0.048] [0.329] [0.989] [0.048] [0.064] [0.048]

logSα 7.3275 7.4089 37.4863 4708.71 194.74 3132.60 24.3662
[0.396] [0.458] [0.218] [0.354] [0.284] [0.128] [0.366]

SαS 0.7222 1.4305 1.1·105 3.4·1016 1.7804 1.2·1010 0.1348
[0.586] [0.339] [0.990] [0.797] [0.980] [0.841] [0.265]

Natural Catastrophe

Exp 5.5543 5.9282 9.0·106 4.1·1022 72.2643 6.1·1013 13.1717
[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.6854 1.1833 5.3860 1.1·104 0.7044 27.4651 0.0912
[0.243] [0.307] [0.064] [0.053] [0.068] [0.023] [0.111]

Weib 0.8180 1.5438 5.6345 1.5·104 1.3975 15.8416 0.1965
[0.096] [0.041] [0.043] [0.028] [0.007] [0.025] [0.006]

logWeib - - - - - - -
- - - - - - -

GPD 0.4841 0.8671 2.4299 1277.28 0.3528 4.3053 0.0390
[0.799] [0.837] [0.369] [0.239] [0.490] [0.235] [0.645]

Burr 0.4604 0.8668 1.9408 477.59 0.2772 2.3411 0.0342
[0.822] [0.793] [0.565] [0.350] [0.560] [0.716] [0.659]

logSα 0.8961 1.2111 2.0143 215.77 0.8062 2.9276 0.1535
[0.456] [0.470] [0.700] [0.726] [0.484] [0.642] [0.444]

SαS 0.5282 1.0383 1.0·105 8.7·1016 0.5587 1.08·1010 0.0328
[0.560] [0.415] [0.093] [0.103] [0.265] [0.158] [0.642]
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• “Human” type operational losses. Conventional KS test would reject most

of the models, with the p-values barely exceeding 35% for the symmetric

αStable and log-αStable models. The symmetric αStable distribution ap-

pears to be suitable in the tails of the distribution, as indicated by the AD

and AD2 tests. W 2 does not strongly support any of the models. However,

based on the “upper tail” tests, the Lognormal, GPD, Burr, and symmetric

αStable assumptions are well supported.

• “Processes” type operational losses. Weibull, Logweibull, and Burr models

fit the data well around the center, as suggested by high p-values of the KS

and V tests. All except the Exponential and GPD assumptions result in

high p-values of the AD and AD2 tests, making the judgements regarding

the choice of an optimal model complicated; these, combined with the W 2

test results, suggest that the Weibull, Logweibull, and Burr models are

optimal. A look at the “upper tail” tests gives a slightly different picture,

with the GPD model showing a very good fit, both on the basis of high p-

value and low statistic value (AD2
up test). In general, the “upper tail” tests

are in favor of very heavy-tailed model assumptions.

• “Technology” type operational losses. The KS and V tests reject all except

the symmetric αStable models. The AD test weakly supports the Burr as-

sumption and strongly supports the symmetric αStable assumption; similar

conclusion is drawn from the W 2 test. Judging from the abovementioned

conventional GOF tests, the symmetric αStable model seems the only rea-

sonable model. However, the ADup and AD2
up tests also support several

other models, making them valid candidates for modeling the losses.

• “External” type operational losses. Weibull models explains the data best
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around the center, as is evident from the high p-values of the KS and V

tests. In the tails, the symmetric αStable model appears the best, while

GPD and Burr also appear to fit the data well in the upper tail.

• Natural Catastrophe claims. GPD and Burr are the most appropriate to

model the center of the data, while log-αStable is also a good candidate

for the tails. In the upper quantiles, highest p-values correspond to the

log-αStable and Burr models. Overall, it seems that the GPD, Burr, and

log-αStable models are the best for the data, with the latter two the best

for the upper tail.
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Chapter 10

Robust Modeling

“Robust methods, in one form or another (and be it a glance at the

data), are necessary; those who still don’t use them are either careless

or ignorant.”

– F. R. Hampel (1973)

10.1 Introduction

In 2001, the Basel Committee made the following recommendation [25, Annex 6]:

“...data will need to be collected and “robust” estimation techniques

(for event impact, frequency, and aggregate operational loss) will need

to be developed.”

In recent years, the methods of robust statistics have been applied to tackle

important issues in finance. [107] use robust statistics to empirically demonstrate

that some of the factors in the well-known three-factor Fama-French model (1992)

are not significant once outliers are eliminated. [105] apply robust estimators to ex-

amine the properties of the S&P500 index returns. [12] investigate the performance
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of portfolio return distribution using robust statistic and and conclude that the

resulting forecasts outperform those under a conventional classical analysis. [132]

use robust estimates for mean and the covariance matrix in the mean-variance

portfolio selection problem.

In this chapter we review the basic concepts of robust statistics and examine

potential applications to operational loss data. Commonly used classical estima-

tors of model parameters may be sub-optimal under minor departures of data

from the model assumptions. Operational loss data are characterized by a very

heavy right tail of the loss distribution attributed to several “low frequency/ high

severity” events. Classical estimators may produce biased estimates of parame-

ters leading to unreasonably high estimates of mean, variance, and the operational

risk VaR and CVaR measures. The main objective of robust methods is to focus

the analysis on the fundamental properties of the bulk of the data, without being

distorted by outliers. We argue that further comparison of results obtained under

the classical and robust procedures can serve as a basis for the VaR sensitivity

analysis and can lead to an understanding of the economic role played by these

extreme events. An empirical study with 1980-2002 public operational loss data

reveals that the highest 5% of losses account for beyond 50% of the operational

risk capital charge. The discussion in this chapter closely follows [40].

10.2 Outliers in Operational Loss Data

Existing empirical evidence suggests that the general pattern of operational loss

severity data is characterized by high kurtosis, severe right-skewness, and a very

heavy right tail created by several outlying events. Figure 10.1 portrays an illus-

trative example of operational loss severity data.

One approach to calibrate operational losses is to fit a parametric family of
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Figure 10.1: Exemplary histogram of operational loss data. Extreme events ap-
pear as a distinctive tail in the far right of the distribution.

f(x) 
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Tail Events 

common loss distributions. One drawback of using these distributions is that they

may not be optimal in fitting well both the center and the tails.1 An alternative

approach, discussed in Chapter 5 §5.3.4, is to use EVT to fit a GPD distribution to

extreme losses exceeding a high pre-specified threshold. Both approaches may be

severely influenced by one or more outlying observations. Classical estimators that

assign equal importance to all available data are highly sensitive to extreme losses

and in the presence of just a few such losses can produce arbitrarily large estimates

of the mean, variance, and the capital charge. For example, high mean and

standard deviation values for operational loss data do not provide an indication

as to whether this is due to generally large values of observations or just one

high-scale event, and it may be difficult to give the right interpretation to such

result.

The presence of “low frequency/ high severity” events in the operational loss

data creates the following paradox. On the one hand, the tail events correspond to

the losses that are infrequent but often are the most destructive for an institution.

In this sense, tail events cannot be ignored as they convey important information

1See, for example, discussion in [39].
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regarding the loss generation process and may signal important flaws in the sys-

tem. On the other hand, as stated earlier, recent empirical findings suggest that

classical methods will frequently fit neither the bulk of the operational loss data

nor the tail events well, and the center and the tails of the data appear to con-

form to different laws. The tail events possess the properties of outliers. In this

light, applying classical methods that use all available data may not be the best

approach, and using robust methods that focus on the dominant portion of the

data may be a better approach. Robust methods take into account the underlying

structure of the data and “separate” the bulk of the data from outlying events,

thereby avoiding the upward bias in the vital statistics and forecasts.

Due to this paradox, the classical model and the robust model are not com-

petitors and both models can be used as important complements to each other.

The results from both approaches are not expected to be the same, as they ex-

plain different phenomena dictated by the original data: the general tendency

(the robust method) and the conservative view (the classical method).

10.3 Some Dangers of Using the Classical Ap-

proach

There are dangers of using only the classical approach in modeling operational

risk. Here we provide two examples.

Suppose, a risk expert constructs a one quarter ahead forecast of the total

operational loss based on the historic data of his institution. Further, assume the

data include the events of the order of magnitude of “9/11” or Hurricane Andrew

(1992) and the Hurricane Katrina (2005). Would his forecast be robust? Most

likely, his forecasts would indicate that his bank will have little reserves left if it
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decides to cover the potential loss.

As another example, suppose a risk analyst fits a heavy-tailed loss distribution

to full data which include several “low frequency/ high severity” data points. The

estimate of the aggregate expected loss (EL) is likely to be very high. In particular,

if the fitted distribution is very heavy-tailed, such as some cases of Pareto or α-

Stable, he may get an infinite mean and infinite second and higher moments’

estimates. Occasionally, EL may even exceed VaR. Ongoing discussions by the

Risk Management Group of the BIS suggest excluding the EL amount from the

total estimated capital charge (e.g., VaR or CVaR) and setting the charge on

the basis of the marginal unexpected loss2 (UL), provided that the bank can

demonstrate its ability to effectively monitor expected operational losses. The

danger of treating outliers equally with the rest of the data is that the resulting

UL-based capital charge may appear insufficient to cover the true exposure to the

risk.

10.4 Overview of Robust Statistics Methodol-

ogy

Robust statistics is the generalization of the classical theory: it takes into account

the possibility of model misspecification, and the inferences remain valid not only

at the parametric model but also in the neighborhood. The pioneering work on

robust statistics is due to [95] and [86]. The objectives of robust statistics are as

follows [90, Ch. 1]:

• To describe the structure best fitting the bulk of the data;

• To identify deviating data points (outliers) or deviating substructures for

2BIS defines UL as VaR− EL.
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further treatment, if desired;

• To identify and give a warning about highly influential data points (“leverage

points”);

• To deal with unsuspected serial correlations, or more generally, with devia-

tions from the assumed correlation structures.

5-10% of wrong values in the data appear to be the rule rather than the

exception [87]. Outliers may appear in data due to (a) gross errors, (b) wrong

classification of the data (outlying observations may not belong to the model

followed by the bulk of the data), (c) grouping, and (d) correlation in the data [90].

10.4.1 Formal Model for Robust Statistics

Let (1−ε) be the probability of well-behaved data, and ε be the probability of data

being contaminated by “bad” observations. If H(x) is an arbitrary distribution

defining a neighborhood of the parametric model Fγ, then G is the two-point

mixture of the parametric model and the contamination distribution:

G(x) = (1− ε)Fγ(x) + εH(x). (10.1)

10.4.2 Traditional Methods of Outlier Detection

Under traditional robust models, outliers are exogenously detected and excluded

from the dataset, and the classical analysis is performed on the “cleaned” data.

Data editing, screening, truncation, censoring, Winsorizing, and trimming are var-

ious methods for data cleaning. Such procedures for outlier detection are referred

to as “forwards-stepping rejection,” or “outside-in rejection” of outliers [150] [151].
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Outlier detection methods in the forwards-stepping rejection procedure can be

of two types: informal and formal. The former approach is rather subjective: a

visual inspection of the database may be performed by a risk expert, and data

points that clearly do not follow “the rule of the majority” are excluded. A

risk expert may further conduct a background analysis of extreme losses, analyze

whether they follow a pattern, and decide whether they are likely to repeat in

the future. Which losses and how many to exclude is left up to his subjective

judgment. For example, [127] examines the operational loss data3 and excludes

1 outlier from the Retail Brokerage loss data (that consists of a total of 3,267

observations) and 5 outliers from the Commercial Banking loss database (that

consists of a total of 3,414 observations).

Formal approaches to discriminate outliers include trimming and Winsorizing

data. For example, (δ, 1 − γ)-trimmed data have the lowest δ and the highest

γ fractions of the original data removed. For symmetrically contaminated data,

δ = γ. In the context of operational risk, contamination is asymmetric (on the

right) and δ = 0.

Unlike trimming, Winsorizing data does not suffer from loss of efficiency. For

an original sample xj, j = 1, . . . , n of size n, define Ln = bnδc and Un = bnγc, and

let x(k) denote the kth order statistic such that x(1) ≤ . . . ≤ x(n). The Winsorized

sample yj, j = 1, . . . , n is obtained by transforming xj, j = 1, . . . , n in the following

way:

yj =


x(Ln+1) j ≤ Ln

x(j) Ln + 1 ≤ j ≤ Un, j = 1, . . . , n

x(Un) j ≥ Un + 1.

(10.2)

3The data are taken from the second Loss Data Collection Exercise (Quantitative Impact
Study 3), see also [27].
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Other outlier rejection principles are based on kurtosis, largest Studentized

residual, Studentized range, Shapiro-Wilk statistic, and Dixon’s rule. A variety of

outlier rejection methods have been discussed by [87] [89] [90] [150] [151] [152] [48],

to name a few. The main criticism of the outlier rejection approach is that infor-

mation is lost due to discarding several data points. One possibility is to choose to

allow a fixed efficiency loss of, say, 5% or 10% [90]. [89] also showed that outside-

in outlier rejection procedures possess low breakdown points4 and estimators can

be severily affected by a relatively small number of extreme observations, which

means that estimators are not robust to heavy contamination. Nevertheless, “any

way of treating outliers which is not totally inappropriate, prevents the worst” [87].

10.4.3 Examples of Non-Robust Estimators

Examples of non-robust estimators include the arithmetic mean, standard devia-

tion, mean deviation and range, covariance and correlation, ordinary least squares

(OLS). Robust measures of center include median, trimmed mean, and Winsorized

mean. Robust measures of spread include inter-quartile range (IQR), median

absolute deviation (MAD), mean absolute deviation, and Winsorized standard

deviation; more estimators of scale were proposed by [145]. Robust estimators

of skewness were studied by [104] [30] [92] and [84]. Robust estimators of kur-

tosis for heavy-tailed distributions were proposed by [93] [94]; others are due

to [126] [93] [94] [84].

4The breakdown of an estimator is the maximum fraction of outliers that an estimator can
tolerate.
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10.4.4 Outlier Detection Approach Based On Influence

Functions

Under more modern robust models, instead of being simply discarded, outliers are

given a further treatment using a “backwards-stepping” or “inside-out” rejection

procedure. One approach is based on the influence functions (IF), proposed by

[86] [88]; see also [90]. IF measures the differential effect of an infinitesimal amount

of contamination in an uncontaminated sample on the value of the estimator T

at a point x, standardized by the amount of contamination:

IF(x;T, Fγ) := lim
ε↘0

T (G)− T (Fγ)

ε
. (10.3)

IF can be used to measure the gross-error sensitivity (GES) – the worst (ap-

proximate) influence which a small amount of contamination of fixed size can have

on the value of the estimator T [90]:

GES(T, Fγ) = sup
x
|IF(x;T, Fγ)|. (10.4)

GES can be used as a tool to detect the observations having a large influ-

ence on the value of the estimator. “Inside-out” outlier rejection rules have

high breakdown points and the estimators can tolerate up to 50% of contami-

nation [150]. Further discussion on IF and “inside-out” outlier treatment pro-

cedures can be found in [96] [150] [151]. Other references on robust statistics

include [146] [116] [105] [9] [97] [131].
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10.4.5 Outlier Rejection Approach and Stress Tests

Performing robust or classical analysis of the data is a trade-off between safety and

efficiency: although some information may be lost while discarding or diminishing

the contribution of the outlying events, one can significantly improve forecasts

and produce more reliable estimates by applying a robust methodology.

An important application of robust statistics is using them as a diagnostic tech-

nique for evaluating the sensitivity of the inference conducted under the classical

model to the rare events and to reveal their possible economic role [107]. Such

analysis can be performed by comparing the results obtained under the classical

and robust procedures.

We note a parallel between data trimming and stress tests that are widely

applied in the operational risk modeling. The underlying mechanism of stress

tests is to add several extreme observations to the dataset. By doing so, a risk

analyst seeks to examine the incremental effect of potentially hazardous events on

VaR and other risk measures. In contrast, with the robust methodology, instead

of adding potential events, already existing but potentially improbable events

are excluded from the database. The purpose is to investigate the fundamental

properties of the main subset of the data in the absence of these unlikely events,

as well as to study their incremental impact on risk measures.

Decisions about whether to include (stress tests) or exclude high-magnitude

events (robust method), or whether to perform both tests, as well as how many

points and of what magnitudes to include or exclude, can be left up to the sub-

jective judgment of the risk expert or can be performed using one of the formal

(objective) procedures discussed earlier.
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10.5 Literature Review: Applications of Robust

Models in Finance

Applications of robust analysis can be found in a variety of recent finance literature

and are dominant in regression analysis. A classical example is the study of

stock return anomalies by [67]: they argue that there appears to be risk premia

associated with the size of firm and book-to-market. [107], however, demonstrated

that the results were driven by a small portion of firms, and use instead least

trimmed squares (LTS) as a robust regression technique to trim the few outlying

observations, and then perform OLS on the remainder of the data.

Another recent study is due to [105] who apply robust estimators to examine

the properties of the S&P500 index returns. They find evidence that the S&P500

index returns are composed of a mixture of two components, with a predomi-

nant component being nearly symmetric with mild kurtosis, and a relatively rare

component generating extreme anomalies.

[12] investigates the performance of portfolio return distribution using robust

and quantile-based methods, and conclude that the resulting forecasts outperform

those under a conventional classical analysis.

[132] uses robust estimates for mean and the covariance matrix in the mean-

variance portfolio selection problem. They show that the robust portfolio outper-

forms the classical one, and the outlying observations that account for 12.5% of

the dataset can have serious influence on portfolio selection under the classical

approach.
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10.6 Application of Robust Methods to Opera-

tional Loss Data

In this section, we apply the simple data trimming technique to historic opera-

tional loss data.

10.6.1 Empirical Study with 1980-2002 Operational Loss

Data

The datasets used for the analysis are described in Chapter 5 §5.2 p.31.

Contamination of the data is of a non-symmetric nature and is located in the

far right tail of the loss distribution. We consistently trim the original datasets

by cutting off the highest 5% of losses. Table 10.1 summarizes the descriptive

statistics of the full and cleaned data.

A dramatic change in the statistics is evident when the robust methodology

is applied: the mean, standard deviation, skewness and kurtosis coefficients have

decreased significantly. Note that the robust measures of center and spread –

median and median absolute deviation (MAD), respectively – remain practically

unaffected.

In the next step, we fit loss distributions to both complete and trimmed

datasets. The densities are defined in Chapter 8 §8.5.2. Table 10.3 (in the Ap-

pendix) exhibits parameter estimates. In majority of cases, outlier rejection has

resulted in significantly less heavy-tailed distributions, as is evident from reduced

location parameters and increased shape parameters. As expected, in majority of

cases, such changes resulted in lower figures for the mean and variance.

GOF statistics and corresponding p-values are presented in Table 10.4 (in the

Appendix). For the “External” loss example we can conclude that medium-tailed
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Table 10.1: Descriptive sample statistics of full and top-5%-trimmed operational
loss data.

“Relation.” “Human” “Process.” “Techn.” “Extern.”

1. Classical Approach

n 849 813 325 67 233

min ($ ×106) 1.07 1.10 1.10 1.13 1.1
max ($ ×106) 6,480 23,630 13,334 830 6,384
mean ($ ×106) 89.86 138.47 285.55 77.43 103.35
median ($ ×106) 14.63 12.32 39.98 11.60 12.89
st.dev. ($ ×106) 360.45 901.51 955.52 136.65 470.24
MAD ($ ×106) 12.47 10.40 37.08 10.42 11.17
skewness 11.6429 22.2416 9.1070 3.1761 11.0320
kurtosis 169.9732 570.1188 112.5151 15.7230 140.8799

2. Robust Approach

n 806 772 304 63 221

min ($ ×106) 1.07 1.10 1.10 1.13 1.1
max ($ ×106) 427.09 855.32 1,178 830.00 364.80
mean ($ ×106) 39.63 45.47 113.31 74.40 39.7515
median ($ ×106) 13.50 11.12 33.61 11.60 11.40
st.dev. ($ ×106) 59.78 85.41 188.66 134.77 63.84
MAD ($ ×106) 11.21 9.14 30.26 10.42 9.64
skewness 2.4998 3.4703 2.6273 3.4060 2.5635
kurtosis 10.1200 19.6686 10.5012 17.5666 10.0539

distributions such as Lognormal and Weibull fit the trimmed data well, in contrast

to heavy-tailed laws in the case when all data are included into the analysis.

Next, we examine the aggregated 1-year EL, VaR0.95, VaR0.99, CVaR0.95, and

CVaR0.99. The estimates are based on out-of-sample 1-year ahead forecast. For

the frequency distribution, a Cox process with a non-homogeneous intensity rate

function was used (see Chapter 7). We note, however, that robust methods have

a negligible effect on the parameters of the frequency distribution. Tables 10.5

(in the Appendix) reports the estimates for the risk measures. The estimates of

the risk measures are considerably lower under the robust method in all cases.
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Hence, robust methods can prevent over-estimation of the capital charge. Table

10.2 also reports the incremental effect inflicted on these measures by the top 5%

observations. The marginal impact was computed by

4 =
Tclass. − Trobust

Tclass.

× 100%, (10.5)

with T being the appropriate measure – one of EL, VaR, and CVaR. For example,

from Table 10.2 it is evident that the twelve extreme data points of the “External”

type losses account for up to 58% of the total EL, and up to 76% of the total

operational risk capital charge (VaR or CVaR). For further details of this empirical

study, see [39].

Regarding backtesting, results for the classical approach were presented in

Chapter 8 §8.5.2 p. 8.5.2. We here reproduce the results for the robust approach.

Tables 10.6, 10.7, 10.8, 10.9, and 10.10 (in the Appendix) present the MSE and

MAE of the forecasts. Clearly, the accuracy of the forecasts has remarkably

improved. For all distributions forecasted quantiles of the loss distribution are

much closer to the bootstrapped quantiles and actual losses. This is especially

true for the high quantiles, as expected, since extreme losses are not extracted from

the analysis. We conclude that with the robust approach the general tendency of

the losses is captured adequately. Further, the approach reveals the sensitivity of

the risk measures VaR and CVaR to the biggest losses in the data. Table 10.11 (in

the Appendix) presents average p-values of the forecasts. Considering the choice

of the right distribution, both tests (forecast error estimates, and the LR test)

converge in their indication of the best model with the in-sample goodness of fit

tests: for example, for the “External” type losses, the robust approach confirms

that the Logweibull distribution has the best forecasting power with Weibull being

the second best choice.
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Table 10.2: Sensitivity of classical VaR to outliers. Figures indicate incremental
VaR as the percentage of classical VaR attributed to top 5% of data. Note: for the
“Technology” type losses, excluding the outliers in the data resulted in heavier-
tailed distributions than under the classical analysis. This may be explained by
the estimation inaccuracy due to the small dataset (63 points).

LN Weib logWeib GPD Burr logSα SαS
“Relationship”

4VaR0.95

VaRclass.
0.95

× 100 56% 59% 59% 77% 89% 52% 66%

4VaR0.99

VaRclass.
0.99

× 100 63% 66% 67% 88% 97% 58% 78%

“Human”

4VaR0.95

VaRclass.
0.95

× 100 68% 70% 71% 85% 89% 82% 67%

4VaR0.99

VaRclass.
0.99

× 100 75% 78% 79% 92% 95% 79% 77%

“Processes”

4VaR0.95

VaRclass.
0.95

× 100 65% 65% 67% 88% 78% 65% -

4VaR0.99

VaRclass.
0.99

× 100 71% 71% 73% 94% 87% 72% -

“Technology”

4VaR0.95

VaRclass.
0.95

× 100 10% 8% 9% - - 6% -

4VaR0.99

VaRclass.
0.99

× 100 7% 8% 8% - - - -

“External”

4VaR0.95

VaRclass.
0.95

× 100 48% 60% 53% 63% 91% 85% 53%

4VaR0.99

VaRclass.
0.99

× 100 61% 71% 65% 79% 98% 79% 68%

The magnitude of the impact of extreme events on the operational risk capital

charge can serve as an important guideline for a bank to decide whether and at

what price it should use insurance against extreme losses.
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10.7 Appendix: Results of Empirical Study

Table 10.3: Estimated parameters for loss distributions fitted to the full and top-
5%-trimmed 1980-2002 operational loss data.

Classical Robust

“Relationship”

LN µ = 16.1911 σ = 2.0654 µ = 16.1722 σ = 1.7476
Weib β = 0.0032 α = 0.3538 β = 0.0003 α = 0.4952
logWeib β = 0.27 · 10−8 α = 7.0197 β = 1.0 · 10−11 α = 9.1858
GPD ξ = 1.2852 β = 1.06 · 107 ξ = 0.9352 β = 1.1 · 107

Burr α = 5.1242 β = 1.02 · 104 α = 2.6845 β = 4.1 · 105

τ = 0.4644 τ = 0.7242
logSα α = 1.9340 β = −1 α = 2 β = 0.9936

σ = 1.5198 µ = 15.9616 σ = 1.2392 µ = 16.1656
SαS α = 0.6592 σ = 9.97 · 106 α = 0.7532 σ = 9.6 · 106

“Human”

LN µ = 15.4627 σ = 2.5642 µ = 15.6905 σ = 2.0691
Weib β = 0.0240 α = 0.2526 β = 0.0030 α = 0.3679
logWeib β = 30.73 · 10−8 α = 7.0197 β = 1.8 · 10−9 α = 7.2258
GPD ξ = 1.6562 β = 0.61 · 107 ξ = 1.2808 β = 0.7 · 107

Burr α = 0.0922 β = 2.85 · 1027 α = 0.3288 β = 1.6 · 1011

τ = 4.4717 τ = 1.7551
logSα α = 1.4042 β = −1 α = 2 β = −0.3944

σ = 2.8957 µ = 10.5108 σ = 1.4700 µ = 15.6746
SαS α = 0.6061 σ = 0.71 · 107 α = 0.6750 σ = 6.7 · 106

“Processes”

LN µ = 17.1600 σ = 2.3249 µ = 17.0090 σ = 1.9917
Weib β = 0.0021 α = 0.3515 β = 0.0003 α = 0.4671
logWeib β = 0.11 · 10−8 α = 7.1614 β = 9.0 · 10−12 α = 8.8672
GPD ξ = 1.6147 β = 2.29 · 107 ξ = 1.1848 β = 2.4 · 107

Burr α = 14.3369 β = 1.20 · 104 α = 48.4907 β = 4.2 · 105

τ = 0.3829 τ = 0.5125
logSα α = 2.0000 β = 0.8195 α = 2 β = −0.1606

σ = 1.6476 µ = 17.1535 σ = 1.4096 µ = 17.0067
SαS α = 0.5478 σ = 1.99 · 107 α = 0.6087 σ = 19.9 · 106

(Continued on next page)
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Table 10.3 (Continued from previous page)

Classical Robust

“Technology”

LN µ = 15.1880 σ = 2.7867 µ = 15.0313 σ = 2.8285
Weib β = 0.0103 α = 0.2938 β = 0.0120 α = 0.2870
logWeib β = 11.06 · 10−8 α = 5.7555 β = 7.7 · 10−8 α = 5.8818
GPD ξ = 2.0925 β = 0.34 · 107 ξ = 2.1207 β = 0.3 · 107

Burr α = 0.0684 β = 8.74 · 1020 α = 0.1643 β = 0.2 · 105

τ = 5.2150 τ = 2.2048
logSα α = 2.0000 β = 0.8040 α = 2 β = −0.4694

σ = 1.9894 µ = 15.1351 σ = 2.0239 µ = 14.9627
SαS α = 0.1827 σ = 1.70 · 106 α = 0.1773 σ = 5.7 · 106

“External”

LN µ = 15.7125 σ = 2.3639 µ = 15.8095 σ = 1.9705
Weib β = 0.0108 α = 0.2933 β = 0.0012 α = 0.4178
logWeib β = 2.82 · 10−8 α = 6.2307 β = 0.21 · 10−9 α = 7.9597
GPD ξ = 1.5352 β = 0.71 · 107 ξ = 1.1813 β = 7.7 · 106

Burr α = 0.1284 β = 3.25 · 1020 α = 1.1642 β = 8.6 · 105

τ = 3.3263 τ = 0.8490
logSα α = 1.3313 β = −1 α = 2 β = 0.4377

σ = 2.7031 µ = 10.1928 σ = 1.3992 µ = 15.7960
SαS α = 0.5905 σ = 0.70 · 107 α = 0.6598 σ = 0.68 · 107
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Table 10.4: Goodness-of-fit test statistics and corresponding p-values (in square
brackets) for the loss distributions fitted to the 1980-2002 operational loss data,
under the robust approach.

KS V AD ADup AD2 AD2
up W 2

“Relationship”

LN 1.3111 2.1614 4.5274 209.12 2.8289 34.5294 0.3485
[<0.005] [<0.005] [0.094] [>0.995] [<0.005] [0.031] [<0.005]

Weib 1.0407 1.7907 3.1282 327.36 1.5822 17.8496 0.2144
[0.005] [0.007] [0.241] [>0.995] [<0.005] [0.051] [<0.005]

logWeib 1.0827 1.9746 3.35808 298.45 2.1510 20.5534 0.2989
[0.005] [<0.005] [0.209] [>0.995] [<0.005] [0.061] [<0.005]

GPD 1.6949 3.1270 4.8998 186.58 6.4187 43.6995 0.8247
[<0.005] [<0.005] [0.072] [>0.995] [<0.005] [0.024] [<0.005]

Burr 1.4346 2.6549 4.1987 251.92 4.3188 30.0690 0.5892
[<0.005] [<0.005] [0.091] [>0.995] [<0.005] [<0.005] [<0.005]

logSα 1.3409 2.1544 4.5217 209.27 2.8492 34.7768 0.3579
[<0.005] [<0.005] [0.078] [>0.995] [<0.005] [0.006] [<0.005]

SαS 1.4187 2.7793 6.3995 144.74 5.5682 59.9109 0.6432
[<0.005] [<0.005] [>0.995] [>0.995] [0.444] [>0.995] [<0.005]

“Human”

LN 1.2655 2.0577 3.8877 263.20 1.9615 25.5394 0.2088
[<0.005] [<0.005] [0.129] [>0.995] [<0.005] [0.032] [0.005]

Weib 1.1172 1.9160 3.9489 400.50 1.4831 16.1407 0.1682
[<0.005] [<0.005] [0.124] [0.991] [<0.005] [0.044] [0.2702]

logWeib 1.1910 2.0574 3.7219 375.73 2.1002 17.9457 0.2712
[<0.005] [<0.005] [0.156] [>0.995] [<0.005] [0.065] [<0.005]

GPD 1.4888 2.7433 4.8677 191.47 4.5564 39.6902 0.5588
[<0.005] [<0.005] [0.091] [>0.995] [<0.005] [0.019] [<0.005]

Burr 2.0257 3.4016 6.1192 149.34 7.6553 57.4970 1.1822
[0.006] [0.006] [0.062] [>0.995] [0.006] [0.011] [0.006]

logSα 1.2826 2.0270 3.8906 262.57 1.9443 25.8006 0.2071
[<0.005] [<0.005] [0.122] [>0.995] [<0.005] [0.032] [<0.005]

SαS 1.0613 2.0876 5.1613 258.41 3.3279 38.9658 0.3708
[0.032] [<0.005] [>0.995] [>0.995] [0.990] [>0.995] [<0.005]

(Continued on next page)
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Table 10.4 (Continued from previous page)

KS V AD ADup AD2 AD2
up W 2

“Processes”

LN 0.9080 1.5288 2.9178 107.11 1.4125 14.0184 0.1825
[0.034] [0.040] [0.249] [>0.995] [<0.005] [0.070] [<0.005]

Weib 0.5271 1.0392 1.8810 163.49 0.5123 6.6792 0.0572
[0.707] [0.582] [0.624] [>0.995] [0.201] [0.137] [0.377]

logWeib 0.5576 1.1087 2.1457 146.86 0.7221 8.0808 0.0811
[0.593] [0.436] [0.499] [>0.995] [0.069] [0.096] [0.162]

GPD 1.1004 2.1675 4.5813 96.7443 3.7234 18.1558 0.4483
[<0.005] [<0.005] [0.097] [>0.995] [<0.005] [0.046] [<0.005]

Burr 0.8113 1.4379 2.3716 185.52 1.0810 6.6638 0.1363
[0.118] [0.109] [0.336] [0.959] [0.021] [0.039] [0.050]

logSα 0.9352 1.5433 2.9087 107.42 1.4381 14.0480 0.1915
[0.028] [0.026] [0.218] [>0.995] [<0.005] [0.056] [0.008]

SαS 1.1692 2.2717 4.3264 77.5942 2.7614 26.4799 0.3115
[0.016] [<0.005] [>0.995] [>0.995] [0.964] [>0.995] [0.016]

“Technology”

LN 1.0796 1.7451 2.7127 41.1440 1.3364 5.9777 0.1978
[<0.005] [0.005] [0.217] [0.989] [<0.005] [0.080] [<0.005]

Weib 1.0368 1.8359 2.7551 51.8632 1.4171 4.5168 0.2150
[<0.005] [<0.005] [0.210] [0.929] [<0.005] [0.087] [<0.005]

logWeib 1.0358 1.9068 2.9926 50.0593 1.6058 4.7010 0.2408
[0.005] [<0.005] [0.179] [0.971] [<0.005] [0.097] [<0.005]

GPD 1.1362 1.7691 2.8950 32.5285 1.5441 8.3021 0.2295
[<0.005] [<0.005] [0.213] [>0.995] [<0.005] [0.070] [<0.005]

Burr 1.1179 1.8744 2.5384 28.0818 1.8242 9.7598 0.3061
[0.356] [0.344] [0.522] [>0.995] [0.345] [0.361] [0.346]

logSα 1.0877 1.7429 2.7385 40.9965 1.3202 6.0542 0.1961
[<0.005] [0.006] [0.222] [0.990] [0.006] [0.068] [0.006]

SαS 2.8693 2.9544 6.0980 33.9452 19.9170 28.8310 3.7892
[0.918] [0.990] [>0.995] [>0.995] [>0.995] [>0.995] [0.084]

(Continued on next page)

158



Table 10.4 (Continued from previous page)

KS V AD ADup AD2 AD2
up W 2

“External”

LN 0.8005 1.5985 2.5289 89.9172 1.2314 10.3629 0.1581
[0.074] [0.017] [0.331] [>0.995] [<0.005] [0.080] [0.013]

Weib 0.8193 1.3842 2.1208 118.00 0.8992 6.3242 0.1149
[0.074] [0.108] [0.469] [>0.995] [0.038] [0.102] [0.069]

logWeib 0.9288 1.5545 2.3070 114.96 1.1789 6.9924 0.1550
[0.030] [0.034] [0.430] [>0.995] [0.005] [0.124] [0.017]

GPD 1.0889 2.1497 3.2082 78.7580 2.4537 14.2314 0.3238
[<0.005] [<0.005] [0.193] [>0.995] [<0.005] [0.063] [<0.005]

Burr 1.0552 2.0537 2.8205 85.6792 2.1547 13.0326 0.2922
[0.106] [0.005] [0.362] [>0.995] [<0.005] [0.006] [0.019]

logSα 0.8213 1.5891 2.5280 89.9499 1.2311 10.4590 0.1605
[0.046] [0.012] [0.302] [>0.995] [<0.005] [0.088] [0.008]

SαS 0.8182 1.6214 3.4638 67.2664 1.7561 17.3323 0.2046
[0.076] [0.034] [>0.995] [>0.995] [0.850] [>0.995] [0.020]
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Table 10.5: Estimated 1-year EL, VaR, and CVaR values (×1010) for the full and
top-5%-trimmed 1980-2002 operational loss data.

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

“Relationship”

LN Classical 0.1634 0.4662 1.0644 0.9016 1.9091

Robust 0.0826 0.2068 0.3947 0.3450 0.6560

Weib Classical 0.1284 0.3187 0.5121 0.4430 0.6689

Robust 0.0638 0.1307 0.1766 0.1604 0.2090

logWeib Classical - 0.3332 0.5902 - -

Robust - 0.1355 0.1924 - -

GPD Classical - 1.5756 11.3028 - -

Robust 0.3013 0.3627 1.4156 5.2570 23.7687

Burr Classical - 1.5713 11.5519 - -

Robust 0.0732 0.1715 0.3333 0.3131 0.6709

logSα Classical - 0.4359 0.9557 - -

Robust - 0.2106 0.4006 - -

SαS Classical - 4.5476 56.2927 - -

Robust - 1.5339 12.2508 - -

“Human”

LN Classical 0.4171 1.2161 3.4190 3.3869 9.4520

Robust 0.1497 0.3953 0.8625 0.7443 1.5569

Weib Classical 0.2881 0.7997 1.5772 1.3232 2.3746

Robust 0.1095 0.2377 0.3504 0.3096 0.4385

logWeib Classical - 0.8672 1.8603 - -

Robust - 0.2527 0.3958 - -

GPD Classical - 12.1150 168.64 - -

Robust - 1.7932 13.4743 - -

Burr Classical - 94.8281 3042.32 - -

Robust - 10.6753 161.59 - -

logSα Classical - 2.2737 4.2319 - -

Robust - 0.4074 0.8983 - -

SαS Classical - 14.5771 203.24 - -

Robust - 4.7612 47.7160 - -

(Continued on next page)
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Table 10.5 (Continued from previous page)

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

“Processes”

LN Classical 0.8457 2.5610 6.5625 5.7823 13.9079

Robust 0.3188 0.8921 1.9222 1.6858 3.5673

Weib Classical 0.5131 1.2761 2.1308 1.8257 2.8578

Robust 0.2121 0.4439 0.6272 0.5568 0.7447

logWeib Classical - 1.4780 2.6511 - -

Robust - 0.4911 0.7287 - -

GPD Classical - 20.8700 262.52 - -

Robust - 2.5224 15.4268 -

Burr Classical - 1.7987 4.1859 - -

Robust 0.1987 0.4053 0.5646 0.5043 0.6731

logSα Classical - 2.5394 6.7070 - -

Robust - 0.8842 1.8991 - -

SαS Classical - 74.9073 1280.02 - -

Robust - 2.04·1011 28.9·1011 - -

“Technology”

LN Classical 0.0958 0.2898 1.2741 1.5439 5.4865

Robust 0.0921 0.2617 1.1838 1.3261 4.5793

Weib Classical 0.0358 0.1454 0.3625 0.2958 0.6180

Robust 0.0334 0.1336 0.3326 0.2787 0.5962

logWeib Classical - 0.1670 0.4747 - -

Robust - 0.1514 0.4355 - -

GPD Classical - 1.6249 54.4650 - -

Robust - 1.47·1010 45.1·1010 - -

Burr Classical - 9.0358 855.78 - -

Robust - 7.73·1010 801·1010 - -

logSα Classical - 0.2990 1.2312 - -

Robust - 0.2802 1.2870 - -

SαS Classical - 7.1·106 6.9·1010 - -

Robust - 5.89·1017 5.60·1021 - -

(Continued on next page)
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Table 10.5 (Continued from previous page)

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

“External”

LN Classical 0.0327 0.1126 0.4257 0.3962 1.1617

Robust 0.0154 0.0580 0.1642 0.1397 0.3334

Weib Classical 0.0208 0.0885 0.2494 0.2025 0.4509

Robust 0.0088 0.0354 0.0715 0.0599 0.1066

logWeib Classical - 0.0839 0.2489 - -

Robust - 0.0395 0.0865 - -

GPD Classical - 0.2562 2.6514 - -

Robust - 0.0943 0.5604 - -

Burr Classical - 0.7165 15.8905 - -

Robust - 0.0676 0.3246 - -

logSα Classical - 0.3879 0.8064 - -

Robust - 0.0570 0.1695 - -

SαS Classical - 0.4714 7.6647 - -

Robust - 0.2234 2.4408 - -
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Table 10.6: Average forecast errors for “Relationship” type aggregated losses:
robust approach. Left: errors between corresponding quantiles; middle: errors of
forecasted quantiles relative to realized loss; right: overall error between forecasted
and realized loss.

Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0022 0.0417 0.0018 0.0394
50 0.0040 0.0509 0.0039 0.0502
75 0.0092 0.0753 0.0120 0.0921
95 0.0431 0.1916 0.0629 0.2368
99 0.1704 0.3952 0.2283 0.4617

99.9 1.1851 1.0771 1.3920 1.1685

0.0274 0.0859

Weib

25 0.0018 0.0390 0.0017 0.0367
50 0.0026 0.0446 0.0025 0.0439
75 0.0039 0.0509 0.0055 0.0556
95 0.0083 0.0729 0.0170 0.1181
99 0.0151 0.1069 0.0340 0.1733

99.9 0.0288 0.1583 0.0667 0.2498

0.0052 0.0552

logWeib

25 0.0017 0.0384 0.0016 0.0361
50 0.0025 0.0442 0.0024 0.0436
75 0.0040 0.0512 0.0056 0.0572
95 0.0090 0.0782 0.0183 0.1234
99 0.0182 0.1227 0.0394 0.1892

99.9 0.0475 0.2101 0.0951 0.3017

0.0055 0.0561

GPD

25 0.0023 0.0425 0.0019 0.0403
50 0.0056 0.0563 0.0054 0.0557
75 0.0205 0.1200 0.0249 0.1368
95 0.3315 0.5390 0.3838 0.5842
99 5.3368 2.1998 5.6442 2.2663

99.9 345.46 17.1380 348.73 17.2293

10.6607 0.2400

Burr

25 0.0018 0.0384 0.0016 0.0362
50 0.0033 0.0465 0.0031 0.0459
75 0.0090 0.0781 0.0120 0.0948
95 0.0855 0.2745 0.1132 0.3196
99 0.9772 0.9112 1.1087 0.9777

99.9 31.5765 4.9530 32.5110 5.0443

1.7318 0.1225

logSα

25 0.0006 0.0223 0.0015 0.0353
50 0.0016 0.0284 0.0016 0.0291
75 0.0064 0.0626 0.0078 0.0731
95 0.0899 0.2662 0.1150 0.3099
99 0.6948 0.7844 0.7980 0.8476

99.9 8.5024 2.7599 8.9913 2.8457

0.0844 0.0937

SαS

25 0.0072 0.0643 0.0053 0.0586
50 0.0326 0.1493 0.0321 0.1478
75 0.2309 0.4306 0.2462 0.4474
95 13.7673 3.4414 14.0927 3.4866
99 869.34 27.2307 873.16 27.2970

99.9 5.1·105 674.49 5.1·105 674.58

1.0·105 6.7593
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Table 10.7: Average forecast errors for “Human” type aggregated losses: robust
approach. Left: errors between corresponding quantiles; middle: errors of fore-
casted quantiles relative to realized loss; right: overall error between forecasted
and realized loss.

Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0023 0.0356 0.0029 0.0468
50 0.0050 0.0479 0.0046 0.0465
75 0.0161 0.1099 0.0221 0.1364
95 0.1414 0.3660 0.1997 0.4399
99 0.8455 0.9129 1.0574 1.0231

99.9 10.0861 3.1153 11.0224 3.2675

0.1233 0.1392

Weib

25 0.0021 0.0357 0.0030 0.0477
50 0.0032 0.0413 0.0031 0.0408
75 0.0061 0.0558 0.0090 0.0785
95 0.0221 0.1322 0.0455 0.2062
99 0.0587 0.2302 0.1190 0.3403

99.9 0.2154 0.4556 0.3734 0.6083

0.0123 0.0789

logWeib

25 0.0022 0.0362 0.0030 0.0481
50 0.0034 0.0411 0.0032 0.0406
75 0.0069 0.0589 0.0100 0.0829
95 0.0269 0.1468 0.0526 0.2207
99 0.0820 0.2745 0.1529 0.3846

99.9 0.3523 0.5741 0.5514 0.7270

0.0144 0.0828

GPD

25 0.0033 0.0361 0.0029 0.0428
50 0.0171 0.1118 0.0163 0.1085
75 0.1576 0.3784 0.1783 0.4050
95 10.6869 3.1887 11.1722 3.2626
99 736.10 26.7003 742.06 26.8102

99.9 2.6·105 455.70 2.6·105 455.85

4.9·106 15.7218

Burr

25 0.0174 0.1131 0.0116 0.0828
50 0.2081 0.4244 0.2052 0.4212
75 4.0533 1.9078 4.1594 1.9344
95 1583.8 38.2283 1589.6 38.302
99 5.9·105 721.19 5.9·105 721.30

99.9 4.5·109 6.0·104 4.5·109 6.0·104

3.1·1011 4224.2

logSα

25 0.0024 0.0364 0.0031 0.0484
50 0.0044 0.0431 0.0042 0.0427
75 0.0111 0.0726 0.0151 0.0993
95 0.0651 0.2067 0.1008 0.2807
99 0.3245 0.4564 0.4411 0.5663

99.9 3.5175 1.3713 3.9992 1.5242

0.0430 0.0994

SαS

25 0.0090 0.0731 0.0059 0.0489
50 0.0619 0.2265 0.0604 0.2232
75 0.6697 0.7782 0.7125 0.8048
95 71.5082 8.1565 72.7595 8.5327
99 7551.45 85.2174 7570.7 2661.2

99.9 7.6·106 2661.0 7.6·106 54.9360

5.3·107 54.9360
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Table 10.8: Average forecast errors for “Processes” type aggregated losses: robust
approach. Left: errors between corresponding quantiles; middle: errors of fore-
casted quantiles relative to realized loss; right: overall error between forecasted
and realized loss.

Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0331 0.1494 0.0516 0.1785
50 0.0392 0.1687 0.0400 0.1704
75 0.0538 0.1963 0.0485 0.1893
95 0.2980 0.4759 0.3717 0.5666
99 1.9817 1.3538 2.3595 1.5047

99.9 22.4811 4.5575 24.1880 4.7621

0.2313 0.2548

Weib

25 0.0332 0.1492 0.0519 0.1783
50 0.0406 0.1697 0.0416 0.1714
75 0.0499 0.1893 0.0385 0.1697
95 0.0791 0.2440 0.0750 0.2330
99 0.1437 0.3271 0.1833 0.3760

99.9 0.3465 0.5078 0.5118 0.6844

0.0537 0.1869

logWeib

25 0.0335 0.1498 0.0524 0.1789
50 0.0405 0.1702 0.0415 0.1720
75 0.0499 0.1893 0.0390 0.1706
95 0.0877 0.2569 0.0924 0.2660
99 0.2033 0.3856 0.2751 0.4826

99.9 0.7410 0.7835 1.0267 0.9885

0.0593 0.1931

GPD

25 0.0033 0.0361 0.0029 0.0428
50 0.0171 0.1118 0.0163 0.1085
75 0.1576 0.3784 0.1783 0.4050
95 10.6869 3.1887 11.1722 3.2626
99 736.10 26.7003 742.06 26.8102

99.9 2.6·105 455.70 2.6·105 455.85

4.9·106 15.7218

Burr

25 0.0174 0.1131 0.0116 0.0828
50 0.2081 0.4244 0.2052 0.4212
75 4.0533 1.9078 4.1594 1.9344
95 1583.8 38.2283 1589.6 38.302
99 5.9·105 721.19 5.9·105 721.30

99.9 4.5·109 6.0·104 4.5·109 6.0·104

3.1·1011 4224.2

logSα

25 0.0024 0.0364 0.0031 0.0484
50 0.0044 0.0431 0.0042 0.0427
75 0.0111 0.0726 0.0151 0.0993
95 0.0651 0.2067 0.1008 0.2807
99 0.3245 0.4564 0.4411 0.5663

99.9 3.5175 1.3713 3.9992 1.5242

0.0430 0.0994

SαS

25 0.0090 0.0731 0.0059 0.0489
50 0.0619 0.2265 0.0604 0.2232
75 0.6697 0.7782 0.7125 0.8048
95 71.5082 8.1565 72.7595 8.5327
99 7551.45 85.2174 7570.7 2661.2

99.9 7.6·106 2661.0 7.6·106 54.9360

5.3·107 54.9360
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Table 10.9: Average forecast errors for “Technology” type aggregated losses: ro-
bust approach. Left: errors between corresponding quantiles; middle: errors of
forecasted quantiles relative to realized loss; right: overall error between forecasted
and realized loss.

Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0005 0.0144 0.0011 0.0206
50 0.0008 0.0247 0.0008 0.0252
75 0.0036 0.0512 0.0039 0.0516
95 0.1906 0.4121 0.2055 0.4303
99 3.9387 1.8837 4.0368 1.9095

99.9 186.07 12.7354 186.96 12.7711

1.2010 0.1449

Weib

25 0.0005 0.0146 0.0011 0.0206
50 0.0007 0.0241 0.0008 0.0246
75 0.0020 0.0427 0.0020 0.0392
95 0.0277 0.1572 0.0326 0.1754
99 0.1928 0.4277 0.2130 0.4534

99.9 1.2291 1.0954 1.3054 1.1315

0.0131 0.0523

logWeib

25 0.0005 0.0147 0.0010 0.0204
50 0.0007 0.0241 0.0008 0.0246
75 0.0021 0.0429 0.0021 0.0401
95 0.0368 0.1830 0.0429 0.2012
99 0.3080 0.5413 0.3367 0.5670

99.9 3.1803 1.7301 3.3058 1.7656

0.0256 0.0590

GPD

25 0.0005 0.0140 0.0011 0.0206
50 0.0008 0.0255 0.0009 0.0260
75 0.0205 0.1151 0.0220 0.1219
95 54.4298 5.6635 54.6411 5.6817
99 1.1·105 228.25 1.1·105 228.27

99.9 2.9·109 3.5·104 2.9·109 3.5·104

2.1·1013 2.4·104

Burr

25 0.0005 0.0138 0.0011 0.0204
50 0.0010 0.0293 0.0011 0.2979
75 0.1533 0.3034 0.1576 0.3103
95 2873.8 39.8687 2875.3 39.8869
99 3.1·107 3789.3 3.1·107 3789.3

99.9 1.8·1013 2.4·1016 1.8·1013 2.4·106

1.0·1021 1.3·108

logSα

25 0.0005 0.0144 0.0011 0.0206
50 0.0008 0.0244 0.0008 0.0249
75 0.0035 0.0505 0.0037 0.0509
95 0.1749 0.4035 0.1896 0.4219
99 3.6596 1.8473 3.7559 1.8731

99.9 186.17 12.0747 187.10 12.1103

4.4229 0.1518

SαS

25 570.47 13.0921 570.22 13.0862
50 4.9·108 1.2·104 4.9·108 1.2·104

75 1.7·1016 6.9·107 1.7·1016 6.9·107

95 1.4·1031 2.0·1015 1.4·1031 2.0·1015

99 4.4·1045 3.0·1022 4.4·1045 3.0·1022

99.9 1.3·1065 1.6·1032 1.3·1065 1.6·1032

7.3·1078 1.0·1037
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Table 10.10: Average forecast errors for “External” type aggregated losses: robust
approach. Left: errors between corresponding quantiles; middle: errors of fore-
casted quantiles relative to realized loss; right: overall error between forecasted
and realized loss.

Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0002 0.0143 0.0004 0.0173
50 0.0004 0.0171 0.0004 0.0171
75 0.0012 0.0256 0.0017 0.0326
95 0.0179 0.1146 0.0254 0.1437
99 0.1615 0.3686 0.1946 0.4108

99.9 2.6093 1.4848 2.7830 1.5420

0.2235 0.0486

Weib

25 0.0002 0.0145 0.0004 0.0169
50 0.0003 0.0157 0.0003 0.0157
75 0.0006 0.0199 0.0009 0.0238
95 0.0037 0.0484 0.0071 0.0752
99 0.0141 0.1041 0.0244 0.1464

99.9 0.0591 0.2240 0.0868 0.2810

0.0019 0.0285

logWeib

25 0.0002 0.0142 0.0004 0.0169
50 0.0003 0.0153 0.0003 0.0153
75 0.0006 0.0195 0.0009 0.0232
95 0.0037 0.0480 0.0071 0.0760
99 0.0149 0.1097 0.0256 0.1518

99.9 0.0775 0.2561 0.1084 0.3130

0.0021 0.0285

GPD

25 0.0002 0.0143 0.0005 0.0182
50 0.0006 0.0205 0.0006 0.0205
75 0.0047 0.0486 0.0059 0.0577
95 0.6101 0.5945 0.6453 0.6236
99 45.2582 5.1661 45.7041 5.2080

99.9 0.3·105 124.80 0.3·105 124.85

0.23·105 1.6344

Burr

25 0.0003 0.0161 0.0005 0.0183
50 0.0019 0.0344 0.0019 0.0344
75 0.0568 0.1692 0.0611 0.1785
95 36.6345 4.1927 36.8775 4.2218
99 0.2·105 90.7056 0.2·105 90.7477

99.9 2.8·108 0.1·105 2.8·108 0.1·105

0.31·1010 401.06

logSα

25 0.0002 0.0141 0.0004 0.0176
50 0.0004 0.0168 0.0004 0.0168
75 0.0012 0.0253 0.0016 0.0307
95 0.0153 0.0972 0.0215 0.1262
99 0.1256 0.2958 0.1510 0.3377

99.9 1.7147 1.0895 1.8363 1.1464

0.0154 0.0416

SαS

25 0.0003 0.0176 0.0005 0.0174
50 0.0014 0.0305 0.0014 0.0305
75 0.0200 0.1080 0.0229 0.1171
95 3.5661 1.5601 3.6621 1.5892
99 620.34 19.6938 622.08 19.7359

99.9 12.5·105 812.08 12.5·105 812.14

2.34·107 29.9384
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Table 10.11: Averaged p-values for aggregated losses in the 7-year 1996-2002 fore-
cast period, under the robust approach.

LN Weib logWeib GPD Burr logSα SαS
“Relationship”

0.5080 0.5260 0.4975 0.4246 0.4410 0.3679 0.5180

“Human”

0.4821 0.4947 0.4774 0.4401 0.4730 0.1443 0.4841

“Processes”

0.2190 0.2008 0.2060 0.2526 0.2433 0.1339 0.2103

“Technology”

0.3373 0.3266 0.3278 0.3303 0.3428 0.3392 0.2148

“External”

0.4876 0.5131 0.5290 0.4730 0.4395 0.3272 0.4704
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Chapter 11

Conclusions and Future Research

Directions

11.1 Conclusions

In Chapter 2, we defined operational risk and summarized its place among other

risks faced by financial institutions. Although the official definition of operational

risk has been widely accepted by the industry, the idiosyncratic nature of oper-

ational risk requires that banks adjust this definition to account for peculiarities

of their business profile, capital structure, and other specifics.

In Chapter 3 we focused on the significance of operational risk and its potential

dangers. We discussed the effects of globalization and financial deregulation on

the risk exposure and further illustrated some examples of large-scale operational

losses in the financial industry from the last two decades.

In Chapter 4 we discussed the regulatory requirements of the Basel II regarding

the operational risk capital charge. The Loss Distribution Approach is of our

primary interest, as it suggests an estimation of the capital charge that relies on
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the statistical techniques for modeling operational risk.

Chapter 5 looked at exploratory data analysis of the operational loss data. We

concluded that the loss amounts need to be modeled with a heavy-tailed distri-

bution, and that the frequency distribution follows a non-homogeneous Poisson

process. We also discussed the aggregation of the frequency and severity distri-

butions and talked about VaR and CVaR as two alternative measures of risk to

be used as a proxy for the operational risk capital charge.

In Chapter 6 we focused on a wide class of α-Stable distributions that pos-

sess attractive features making them applicable to operational risk modeling: (1)

high flexibility due to four parameters, (2) stability under linear transformations,

and (3) the power-law tail decay that captures heavy tails. Variations of the α-

Stable distributions were considered before being applied to the operational loss

data. They include symmetric α-Stable distribution, logα-Stable distribution, and

left-truncated α-Stable distribution. Applications of the α-Stable distribution to

actual operational loss data provided empirical evidence that the operational loss

data are severely heavy-tailed and are well captured by the variations of the α-

Stable distributions.

Chapter 7 was devoted to modeling the frequency distribution with a Cox pro-

cess with stochastic intensity. In related literature, majority of empirical studies

rely on the simple homogeneous Poisson assumption for the frequency distribution

of the losses. In the chapter we refuted such assumption and proposed analytic

formulae for the non-homogeneous frequency rate functions. Necessary tests were

performed against real operational frequency data and the assumption on non-

homogeneity was strongly supported.

In Chapter 8 we discussed the reporting bias problem. In the first half of the

chapter, we described theoretical implications of ignoring unrecorded data and
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proposed an effective solution to account for the resulting bias. Under the “naive”

approach that ignores the missing data (and the one most frequently used by the

industry), the loss distribution becomes misspecified and the frequency of losses is

underestimated. We suggested a conditional approach that allows one to capture

the portion of missing data and to correctly estimate the unknown parameters

of both loss and frequency distributions. Theoretical studies, supplemented by

extensive Monte Carlo simulations, revealed that using “naive” approach may

have serious financial consequences by underestimating the capital charge. In the

second half of the chapter, we tested the methodology against real operational

loss data. A comprehensive empirical study supported the theoretical findings

that EL, VaR, and CVaR are severely understated whenever a wrong approach is

used.

In Chapter 9 we proposed two modified versions of the Anderson-Darling

goodness-of-fit statistic in which the weighting function is increasing in the di-

rection of the upper tail of the distribution. A supremum and quadratic versions

of the statistic were proposed. The statistic was applied to check the goodness

of fit of a number of distributions using operational loss data and catastrophe

insurance claims data sets. From the empirical analysis we concluded that in the

upper quantiles heavier-tailed distributions better fit the data than Lognormal or

thinner-tailed distributions in many instances.

Chapter 10 was devoted to robust methods and their applications to oper-

ational loss data. Mathematically elegant classical estimation procedures may

behave poorly under minor departures in the data from the model assumptions

and in the presence of outliers classical procedures may produce biased estimates

of the model parameters and vital statistics. We applied robust methods to in-

vestigate the marginal contribution of extreme low-frequency events to EL, VaR,
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and CVaR. Empirical findings demonstrated that the incremental contribution of

extreme events that account for the highest 5% of data stands well beyond 50%

of the annual aggregate expected loss and the operational risk regulatory capital

charge.

11.2 Future Research Directions

Operational risk modelling and management is not limited to financial institutions,

and similar models will find application in private corporations. Future research

interests reside in the following key areas.

Integrated Risk Management

We plan to undertake a global approach to modelling financial risk in banks –

Integrated Risk Management (IRM). In this approach, a bank’s loss data would

be analyzed in a single integrated model. Relevant directions for the research

include:

• Examination of a bank’s loss data in a multiple regression model with ex-

planatory variables spanned by a number of market risk, credit risk, and

operational risk associated factors. In this factor analysis model, the contri-

bution of market, credit, and operational risk to the total risk is captured

by the beta coefficients. Currently available estimates suggest that roughly

60%, 15%, and 25% of bank’s regulatory capital is allocated for credit, mar-

ket, and operational risks, respectively (proportional to the shares of finan-

cial risk attributed to the risk type). The integrated regression model would

enable one to formalize the results. The regression error is expected to be

attributed to political, reputational, and other risks outside the scope of
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credit, market, and operational risks.

• Principal component analysis and development of model reduction tools

upon the assessment of the sensitivity of a bank’s losses to various risks.

In particular, factor analysis performed with operational loss data would

serve the purpose of detecting key drivers behind the operational risk expo-

sure.

• Checking for possible inter-dependence between market, credit, and opera-

tional risk types. Since multivariate distributions rely on a linear dependence

structure, they may not be optimal to sufficiently capture the dependence

when the underlying data is heavy-tailed. Hence, alternative models such as

copulas (t-copulas, Gumbel copulas, semi- parametric copulas, etc.) would

be brought into study.

Smoothly Truncated α-Stable Distributions

A significant portion of the empirical and theoretical analysis in this dissertation

involved αStable distributions. αStable distributions have a number of highly

attractive features making them applicable to operational risk modeling: (1) sta-

bility under affine transformations, (2) flexibility due to four parameters (location,

scale, shape, and skewness), and (3) ability to capture heavy tails. We consid-

ered variations of αStable distributions: log-αStable, symmetric αStable (fitted

to symmetrized data), and the regular αStable – they were supported by our

empirical findings.

Apart from the case when α = 2 (Gaussian), the second moment is infinite

and the first moment is finite only for α > 1. We plan to examine the following

modified versions of the α-Stable distribution: (1) right-truncated α-Stable, in

which a truncated loss distribution is defined on the support bounded above by
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a prespecified (or random) threshold, (2) smoothly truncated α-Stable in which

heavy tails are replaced by Exponential tails (the Lévy flight), and (3) smoothly

truncated α-Stable, in which heavy tails are replaced by Gaussian tails [125]. As

a further generalization, one may replace Gaussian tails by Weibull or Gamma

tails, and test the models with real data problems.

Extreme Value Theory

Many existing operational loss models rely on Extreme Value Theory. Under

this approach, the parametric assessment of the loss distribution is concerned

only with the extreme events (modeled with the Generalized Pareto Distribution

(GPD)), while lower-magnitude losses are given a lesser attention (and are often

modeled with the empirical distribution function). In our opinion, this approach,

in its current development, has two significant drawbacks. First, the use of the

empirical loss distribution for low-magnitude and medium-magnitude losses can

be justified only by a comprehensive dataset (interpreted as the population). For

example, the Hill estimator can really work for sample of size 500,000, even if

the sample is taken from alpha-stable distribution with index alpha=1.8 [137].

However, scarcity of available data would not allow for such an assumption to

be valid. Second, existing methodologies on detecting the high threshold (above

which the losses are to follow the GPD) do not possess sufficient analytical grounds

and are rather ad hoc: the common procedure relies on a visual inspection of the

mean excess plot and selection of the threshold above which the graph follows

a fairly straight line. The parameters estimated with the GPD distribution are

highly sensitive to the choice of the threshold. In this light, relevant research

direction includes the following:

• Developing formal statistical procedures for choosing an optimal high thresh-
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old. One possibility would be to view the problem as a constrained minimiza-

tion problem, in which the threshold point is chosen such that the distance

between the empirical and fitted distribution functions is minimized in the

upper tail (above the threshold), according to a particular measure: MSE,

KS, AD, or another measure.

• Analyzing models in which the dataset is split into two subsets, with the

losses below the high threshold modelled with a parametric (rather than

empirical) loss distribution, and the losses above the threshold modelled

with the GPD distribution.

• Studying mixture models applied to the full data to simultaneously fit low-

magnitude and high-magnitude losses and extreme losses. Due to the scarcity

in the data, an optimal statistical procedure would be to use the Expectation-

Maximization algorithm. Certainly, all competing models should be ana-

lyzed and tested against real data.

Dependent Random Sum Models

In Chapter 5 we discussed the aggregation of the frequency and severity distri-

butions. Actuarial models currently used are limited due to simplifying assump-

tions on the loss and frequency distributions: iid and stationarity. We intend to

relax these assumptions and evaluate generalized random sum models with non-

stationary and possibly dependent claims correlated with stochastic frequency

through a particular dependence scheme. For example, it is possible that op-

erational losses of a low-magnitude are serially correlated: say, if a bank hires

new employees in April then it may observe cyclicality effects in the losses falling

into the category of human errors, with a cycle of length one year (evidence of
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cyclical behavior was presented in Chapter 7). Likewise, it is less likely that large-

magnitude operational losses (such as terrorist attacks or large internal frauds)

would be dependent in time.

Aggregation of several loss processes remains an important task. Although this

issue was not covered in this dissertation, future work will include modeling com-

plex dependence structure of operational loss data. The AMA proposed by the

Basel II suggest estimating operational risk capital separately for each “business

line/ event type” combination. This is done in order to capture the differences in

the degrees and nature of operational risk exposure across bank’s various business

units. Such procedure is not common in market risk and credit risk models. A sim-

ple sum of the capital charges across all “business line/ event type” combinations

may result in over-estimation of the total capital charge. To prevent this from

happening, it is essential to account for dependence between these combinations.

Covariance and correlation are the simplest measures of dependency, but they

assume a linear type of dependence, and therefore can produce misleading results

if the linearity assumption is not true. If the groups are perfectly correlated (i.e.,

have a perfect positive correlation), then the total capital charge is a simple sum

of the individual capital charges across groups. An alternative approach would

involve using copulas that are more flexible about the form of the dependence

structure that can exist between different groups. Examples include the Gaussian

copula, t-copula, Gumbel copula, Frank copula, etc. An attractive property of

copulas is their ability to capture the tail dependence between random variables,

that is preserved under linear transformations of the variables. Applying copulas

to operational risk modeling remains a topic for future research and is not treated

in this dissertation. Dependent models in operational risk have been discussed

by [56] [63] [60] [29] [64].
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Glossary of Acronyms

AD Anderson-Darling

AMA Advanced Measurement Approaches

Basel I The Basel I Capital Accord

Basel II The Basel II Capital Accord

BCBS Basel Committee for Banking Supervision

BIA Basic Indicator Approach

BIS Bank of International Settlements

CAPM Capital Asset Pricing Model

cdf Cumulative distribution function

CLT Central Limit Theorem

CVaR Conditional Value-at-Risk

EDF Empirical distribution function

EL Expected aggregate loss

EM Expectation-Maximization

ES Expected Shortfall

ETL Expected Tail Loss

EVT Extreme Value Theory

FFT Fast Fourier Transform

GOF Goodness of fit
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GES Gross Error Sensitivity

GPD Generalized Pareto Distribution

HPP Homogeneous Poisson Process

IF Influence function

iid Independent and identically distributed

KS Kolmogorov-Smirnov

LDA Loss Distribution Approach

LDCA Loss Data Collection Exercise

LR Likelihood Ratio

LTS Least Trimmed Squares

MAE Mean Absolute Error

M&A Mergers and Acquisitions

MLE Maximum Likelihood Estimator

MRC Minimum regulatory capital

MSE Mean Squared Error

NHPP Non-homogeneous Poisson process

OLS Ordinary Least Squares

pdf Probability density function

PIT Probability Integral Transformation

POT Peak Over Threshold

pmf Probability mass function

TSA Standardized Approach

UL Unexpected aggregate loss

VaR Value-at-Risk
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[129] J. Neslehová, P. Embrechts, and V. Chavez-Demoulin. Infinite Mean Models

and the LDA for Operational Risk. Technical report, ETH Zürich, 2006.
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